Extractors against Side-Channel Attacks: Weak or Strong?

  • Marcel Medwed
  • François-Xavier Standaert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6917)

Abstract

Randomness extractors are important tools in cryptography. Their goal is to compress a high-entropy source into a more uniform output. Beyond their theoretical interest, they have recently gained attention because of their use in the design and proof of leakage-resilient primitives, such as stream ciphers and pseudorandom functions. However, for these proofs of leakage resilience to be meaningful in practice, it is important to instantiate and implement the components they are based on. In this context, while numerous works have investigated the implementation properties of block ciphers such as the AES Rijndael, very little is known about the application of side-channel attacks against extractor implementations. In order to close this gap, this paper instantiates a low-cost hardware extractor and analyzes it both from a performance and from a side-channel security point of view. Our investigations lead to contrasted conclusions. On the one hand, extractors can be efficiently implemented and protected with masking. On the other hand, they provide adversaries with many more exploitable leakage samples than, e.g. block ciphers. As a result, they can ensure high security margins against standard (non-profiled) side-channel attacks and turn out to be much weaker against profiled attacks. From a methodological point of view, our analysis consequently raises the question of which attack strategies should be considered in security evaluations.

Keywords

Clock Cycle Block Cipher Stream Cipher Pseudorandom Function Cryptology ePrint Archive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Dodis, Y., Pietrzak, K.: Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks on Feistel Networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 21–40. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: FOCS, pp. 293–302. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  4. 4.
    Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis (The ”Duplication” Method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Krawczyk, H.: LFSR-Based Hashing and Authentication. In: Desmedt, Y. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007)MATHGoogle Scholar
  10. 10.
    Mangard, S., Oswald, E., Standaert, F.-X.: One for All - All for One: Unifying Standard DPA Attacks. Cryptology ePrint Archive, Report 2009/449 (2009), http://eprint.iacr.org/ to appear in IET Information Security
  11. 11.
    Medwed, M., Standaert, F.-X.: Extractors Against Side-Channel Attacks: Weak or Strong? Cryptology ePrint Archive, Report 2011/348 (2011), http://eprint.iacr.org/
  12. 12.
    Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order Differential Power Analysis. IEEE Trans. Computers 58(6), 799–811 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Standaert, F.-X.: How Leaky Is an Extractor? In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 294–304. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Standaert, F.-X., Malkin, T., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.: Leakage Resilient Cryptography in Practice. In: Basin, D., Maurer, U., Sadeghi, A.-R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security, Information Security and Cryptography, pp. 99–134. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard, S.: The World Is Not Enough: Another Look on Second-Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive Chosen-Message Side-Channel Attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudorandom generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security, pp. 141–151. ACM, New York (2010)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Marcel Medwed
    • 1
  • François-Xavier Standaert
    • 1
  1. 1.UCL Crypto GroupUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations