Carousel Scheduling of Advertisement Contents on Digital Multimedia Broadcasting

  • Junghoon Lee
  • Hye-Jin Kim
  • Jin-hee Ko
  • Youngshin Hong
Part of the Communications in Computer and Information Science book series (CCIS, volume 223)


This paper functionally designs a broadcast scheduler for the advertisement system built on top of a digital multimedia broadcasting system for fast moving vehicles. The design goals lie in improving the advertisement efficiency by giving a higher frequency to the advertisement item more users are likely to be interested in. To overcome the lack of upstream communication paths and limited bandwidth, path prediction and past history analysis techniques are exploited in estimating the current vehicle distribution. The inference engine periodically adjusts the broadcast frequency of each item so as to meet the bandwidth constraint, taking into account the estimated vehicle distribution along with the position associated with each advertisement. According to the assigned frequency, the periodic generator fills the carousel queue, from which broadcast item is taken one by one.


digital multimedia broadcasting advertisement content carousel scheduling path prediction channel efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Manson, G., Berrani, S.: Automatic TV Broadcast Structuring. International Journal of Digital Multimedia Broadcasting (2010)Google Scholar
  2. 2.
    Lee, J., Kim, H., Shin, I., Cho, J., Lee, S., Kwak, H.: Design of an Advertisement Scenario for Electric Vehicles Using Digital Multimedia Broadcasting. In: Kim, T.-h., Stoica, A., Chang, R.-S. (eds.) SUComS 2010. CCIS, vol. 78, pp. 288–291. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Krumm, J.: Ubiquitous Advertising: The Killer Application for the 21st Century. IEEE Pervasive Computing Magazine 10(1) (2011)Google Scholar
  4. 4.
    Guille, C., Gross, G.: A Conceptual Framework for the Vehicle-to-grid (V2G) Implementation. Energy Policy 37, 4379–4390 (2009)CrossRefGoogle Scholar
  5. 5.
    Langberg, M., Sprintson, A., Bruck, J.: Optimal Universal Scheduler for Discrete Broadcast. IEEE Transactions on Information Theory 54(9), 4365–4372 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Foltz, K., Xu, L., Bruck, J.: Scheduling for Efficient Data Broadcast over Two Channels. In: Proc. of International Symposium on Information Theory, pp. 113–116 (2004)Google Scholar
  7. 7.
    Chang, J., Erlebach, T., Gailis, R., Khuller, S.: Broadcast Scheduling: Algorithms and Complexity. In: ACM-SIAM Symposium on Discrete Algorithms (2008)Google Scholar
  8. 8.
    ISO/TS 18234-2, Traffic and Travel Information (TTI), TTI via Transport Protocol Expert Group (TPEG) data-streams, Part 2: Syntax, Semantics and Framing Structure (SSF) (2004)Google Scholar
  9. 9.
    Froehilch, J., Krumm, J.: Route Prediction from Trip Observations. In: Society of Automotive Engineers (SAE) World Congress (2008)Google Scholar
  10. 10.
    Krumm, J., Horvitz, E.: Predestination: Inferring destinations from partial trajectories. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 243–260. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Won, J., Kim, S., Baek, J., Lee, J.: Trajectory Clustering in Road Network Environment. In: IEEE Symposium on Computational Intelligence and Data Mining, pp. 299–305 (2009)Google Scholar
  12. 12.
    Kim, S., Won, J., Kim, J., Shin, M., Lee, J., Kim, H.: Path Prediction of Moving Objects on Road Networks through Analyzing Past Trajectories. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 379–389. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Lee, J.: Traveling Pattern Analysis for the Design of Location-Dependent Contents based on the Taxi Telematics System. In: International Conference on Multimedia, Information Technology and its Applications, pp. 148–151 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Junghoon Lee
    • 1
  • Hye-Jin Kim
    • 1
  • Jin-hee Ko
    • 1
  • Youngshin Hong
    • 1
  1. 1.Dept. of Computer Science and StatisticsJeju National UniversityJeju DoRepublic of Korea

Personalised recommendations