Placental Types

  • Kurt Benirschke
  • Graham J. Burton
  • Rebecca N. Baergen
Chapter

Abstract

All viviparous vertebrates develop a system of extraembryonic membranes that surround the fetus. The apposition or fusion of these fetal membranes with the uterine mucosa, for purposes of maternal-fetal physiological exchange, initiates the formation of the placenta. The fetus is connected to the membranes by the umbilical cord. The maternal-fetal contact zone, provided by the membranes and the endometrium, represents the placenta.

Keywords

Imprint Gene Intervillous Space Chorionic Plate Fetal Capillary Chorioallantoic Placenta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamson SL, Lu Y, Whiteley KJ, Holmyard D, Hemberger M, Pfarrer C, Cross JC (2002) Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol 250:358–373PubMedCrossRefGoogle Scholar
  2. Allen WR, Wilsher S (2009) A review of implantation and early pla­centation in the mare. Placenta 30:1005–1015PubMedCrossRefGoogle Scholar
  3. Amoroso EC (1952) Placentation. In: Parkes AS (ed) Marshall’s phy­siology of reproduction, 3rd edn. Longmans Green, London, pp 127–316Google Scholar
  4. Angiolini E, Fowden A, Coan P, Sandovici I, Smith P, Dean W, Burton G, Tycko B, Reik W, Sibley C, Constancia M (2006) Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 27(Suppl A):S98–S102PubMedCrossRefGoogle Scholar
  5. Angiolini E, Coan PM, Sandovici I, Iwajomo OH, Peck G, Burton GJ, Sibley CP, Reik W, Fowden AL, Constancia M (2011) Developmental adaptations to increased fetal nutrient demand in mouse genetic models of Igf2-mediated overgrowth. FASEB J 25:1737–1745Google Scholar
  6. Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376PubMedCrossRefGoogle Scholar
  7. Björkman N (1970) An atlas of placental fine structure. Bailliere, Tindall & Cassell, London, Williams & Wilkins, BaltimoreGoogle Scholar
  8. Boyd JD, Hamilton WJ (1970) The human placenta. Heffer, CambridgeGoogle Scholar
  9. Burton GJ (2009) Oxygen, the Janus gas; its effects on human placental development and function. J Anat 215:27–35PubMedCrossRefGoogle Scholar
  10. Burton GJ, Jauniaux E, Charnock-Jones, DS (2010) The influence of the intrauterine environment on human placental development. Int J Dev Biol. 54:303–312Google Scholar
  11. Capellini I, Venditti C, Barton RA (2011) Placentation and maternal investment in mammals. Am Nat 177:86–98PubMedCrossRefGoogle Scholar
  12. Carpenter SJ (1972) Light and electron microscopic observations on the morphogenesis of the chorioallantoic placenta of the golden hamster (Cricetus auratus): days seven through nine of gestation. Am J Anat 135:445–476PubMedCrossRefGoogle Scholar
  13. Carter AM (2007) Animal models of human placentation – a review. Placenta 28(Suppl A):S41–S47PubMedCrossRefGoogle Scholar
  14. Carter AM (2009) Evolution of factors affecting placental oxygen transfer. Placenta 30(Suppl A):S19–S25PubMedCrossRefGoogle Scholar
  15. Carter AM, Mess A (2007) Evolution of the placenta in eutherian mammals. Placenta 28:259–262PubMedCrossRefGoogle Scholar
  16. Carter AM, Miglino MA, Ambrosio CE, Santos TC, Rosas FC, Neto JA, Lazzarini SM, Carvalho AF, da Silva VM (2008) Placentation in the Amazonian manatee (Trichechus inunguis). Reprod Fertil Dev 20:537–545PubMedCrossRefGoogle Scholar
  17. Coan PM, Ferguson-Smith AC, Burton GJ (2004) Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol Reprod 70:1806–1813PubMedCrossRefGoogle Scholar
  18. Coan PM, Burton GJ, Ferguson-Smith AC (2005) Imprinted genes in the placenta – a review. Placenta 26(Suppl A):S10–S20PubMedCrossRefGoogle Scholar
  19. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–948PubMedCrossRefGoogle Scholar
  20. Constancia M, Kelsey G, Reik W (2004) Resourceful imprinting. Nature 432:53–57PubMedCrossRefGoogle Scholar
  21. Cox B, Kotlyar M, Evangelou AI, Ignatchenko V, Ignatchenko A, Whiteley K, Jurisica I, Adamson SL, Rossant J, Kislinger T (2009) Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Mol Syst Biol 5:279PubMedCrossRefGoogle Scholar
  22. Cross JC, Baczyk D, Dobric N, Hemberger M, Hughes M, Simmons DG, Yamamoto H, Kingdom JCP (2003) Genes, development and evolution of the placenta. Placenta 24:123–130PubMedCrossRefGoogle Scholar
  23. Dantzer V, Leiser R, Kaufmann P, Luckhardt M (1988) Comparative morphological aspects of placental vascularization. Trophoblast Res 3:235–260Google Scholar
  24. Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur J, Chen J (2009) Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics 4:235–240PubMedGoogle Scholar
  25. Elliot MG, Crespi BJ (2008) Placental invasiveness and brain-body allometry in eutherian mammals. J Evol Biol 21:1763–1778PubMedCrossRefGoogle Scholar
  26. Elliot MG, Crespi BJ (2009) Phylogenetic evidence for early hemochorial placentation in eutheria. Placenta 30:949–967PubMedCrossRefGoogle Scholar
  27. Enders AC (1965) A comparative study of the fine structure in several hemochorial placentas. Am J Anat 116:29–68PubMedCrossRefGoogle Scholar
  28. Enders AC (2009) Reasons for diversity of placental structure. Placenta 30(Suppl A):S15–S18PubMedCrossRefGoogle Scholar
  29. Enders AC, Carter AM (2006) Comparative placentation: some interesting modifications for histotrophic nutrition – a review. Placenta 27(Suppl A):S11–S16PubMedCrossRefGoogle Scholar
  30. Faber JJ (1969) Application of the theory of heat exchangers to the transfer of inert materials in placentas. Circ Res 24:221–234PubMedCrossRefGoogle Scholar
  31. Faber JJ, Thornburg KL (1983) Placental physiology: structure and function of fetomaternal exchange. Raven, New YorkGoogle Scholar
  32. Falkowski PG, Katz ME, Milligan AJ, Fennel K, Cramer BS, Aubry MP, Berner RA, Novacek MJ, Zapol WM (2005) The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309:2202–2204PubMedCrossRefGoogle Scholar
  33. Fischer TV (1971) Placentation in the American beaver (Castor canadensis). Am J Anat 131:159–184PubMedCrossRefGoogle Scholar
  34. Foidart JM, Hustin J, Dubois M, Schaaps JP (1992) The human placenta becomes haemochorial at the 13th week of pregnancy. Int J Dev Biol 36:451–453Google Scholar
  35. Fowden AL, Sferruzzi-Perri AN, Coan PM, Constancia M, Burton GJ (2009) Placental efficiency and adaptation: endocrine regulation. J Physiol 587:3459–3472PubMedCrossRefGoogle Scholar
  36. Freyer C, Renfree MB (2009) The mammalian yolk sac placenta. J Exp Zool B Mol Dev Evol 312:545–554PubMedCrossRefGoogle Scholar
  37. Georgiades P, Ferguson-Smith AC, Burton GJ (2002) Comparative developmental anatomy of the murine and human definitive placenta. Placenta 23:3–19PubMedCrossRefGoogle Scholar
  38. Grosser O (1909) Vergleichende Anatomie und Entwicklungsgeschichte der Eihäute und der Placenta mit besonderer Berücksichtigung des Menschen. Braumüller, ViennaGoogle Scholar
  39. Grosser O (1927) Frühentwicklung, Eihautbildung und Placentation des Menschen und der Säugetiere. In: Jaschke RT (ed) Deutsche Frauenheilkunde, Geburtshilfe, Gynäkologie und Nachbargebiete in Einzeldarstellungen, vol 5. Bergmann, MunichGoogle Scholar
  40. Jauniaux E, Poston L, Burton GJ (2006) Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum Reprod Update 12:747–755PubMedCrossRefGoogle Scholar
  41. Kaufmann P (1981) Functional anatomy of the non-primate placenta. Placenta Suppl 1:13–28Google Scholar
  42. Kaufmann P, Davidoff M (1977) The guinea pig placenta. Adv Anat Embryol Cell Biol 53:1–90Google Scholar
  43. Kaufmann P, Scheffen I (1992) Placental development. In: Polin R, Fox W (eds) Neonatal and fetal medicine-physiology and pathophysiology, vol 1. Saunders, Orlando, pp 47–55Google Scholar
  44. Kaufmann P, Luckhardt M, Elger W (1985) The structure of the tupaia placenta. II. Ultrastructure. Anat Embryol (Berl) 171:211–221CrossRefGoogle Scholar
  45. King BF (1982) Comparative anatomy of the placental barrier. Bibl Anat 22:13–28PubMedGoogle Scholar
  46. King BF, Mais JJ (1982) Developmental changes in rhesus monkey placental villi and cell columns. Anat Embryol (Berl) 165:361–376CrossRefGoogle Scholar
  47. King GJ, Atkinson BA, Robertson HA (1979) Development of the bovine placentome during the second month of gestation. J Reprod Fertil 55:173–180PubMedCrossRefGoogle Scholar
  48. Knox K, Baker JC (2008) Genomic evolution of the placenta using co-option and duplication and divergence. Genome Res 18:695–705PubMedCrossRefGoogle Scholar
  49. Leiser R, Kohler T (1984) The blood vessels of the cat girdle placenta. Observations on corrosion casts, scanning electron microscopical and histological studies. II. Fetal vasculature. Anat Embryol (Berl) 170:209–216CrossRefGoogle Scholar
  50. Luckett WP (1970) The fine structure of the placental villi of the rhesus monkey (Macaca mulatta). Anat Rec 167:141–164CrossRefGoogle Scholar
  51. Luckett WP (1974) Comparative development and evolution of the placenta in primates. Contrib Primatol 3:142–234PubMedGoogle Scholar
  52. Luckhardt M, Kaufmann P, Elger W (1985) The structure of the tupaia placenta. I. Histology and vascularisation. Anat Embryol (Berl) 171:201–210CrossRefGoogle Scholar
  53. Ludwig KS (1981) Vergleichende Anatomie der Plazenta. In: Becker V, Schiebler TH, Kubli F (eds) Die Plazenta des Menschen. Thieme, Stuttgart, pp 1–12Google Scholar
  54. Ludwig KS, Baur R (1971) The chimpanzee placenta. In: Bourne GH (ed) The chimpanzee, vol 4. University Park Press, Baltimore, pp 349–372Google Scholar
  55. MacDonald AA, Bosma AA (1985) Notes on placentation in Suina. Placenta 6:83–92PubMedCrossRefGoogle Scholar
  56. Malassiné A, Leiser R (1984) Morphogenesis and fine structure of the near-term placenta of Talpa europaea: I. Endotheliochorial labyrinth. Placenta 5:145–158PubMedCrossRefGoogle Scholar
  57. Malassiné A, Frendo J-L, Evain-Brion D (2003) A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod 9:531–539CrossRefGoogle Scholar
  58. Martin CB (1981) Models of placental blood flow. Placenta Suppl 1:65–80Google Scholar
  59. Martin RD (2008) Evolution of placentation: implications of mammalian phylogeny. Evol Biol 35:125–145CrossRefGoogle Scholar
  60. McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, Weksberg R, Thaker HM, Tycko B (2006) Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta 27:540–549PubMedCrossRefGoogle Scholar
  61. Merker H-J, Bremer D, Barrach H-J, Gossrau R (1987) The basement membrane of the persisting maternal blood vessels in the placenta of Callithrix jacchus. Anat Embryol 176:87–97PubMedCrossRefGoogle Scholar
  62. Mess A, Carter AM (2006) Evolutionary transformations of fetal membrane characters in Eutheria with special reference to Afrotheria. J Exp Zool B Mol Dev Evol 306:140–163PubMedCrossRefGoogle Scholar
  63. Miglino MA, Ambrosio CE, dos Santos Martins D, Wenceslau CV, Pfarrer C, Leiser R (2006) The carnivore pregnancy: the development of the embryo and fetal membranes. Theriogenology 66:1699–1702PubMedCrossRefGoogle Scholar
  64. Moll W (1972) Gas exchange in concurrent, countercurrent and crosscurrent flow systems. The concept of the fetoplacental unit. In: Longo LD, Bartels H (eds) Respiratory gas exchange and blood flow in the placenta. DHEW Publ. No. (NIH) 73–361, Department of Health, Education and Welfare, Washington, D.C., pp 281–294Google Scholar
  65. Moll W (1981) Theorie des plazentaren Transfers durch Diffusion. In: Becker V, Schiebler TH, Kubli F (eds) Die Plazenta des Menschen. Thieme, Stuttgart, pp 129–139Google Scholar
  66. Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49PubMedGoogle Scholar
  67. Mossman HW (1987) Vertebrate fetal membranes: comparative ontogeny and morphology; evolution; phylogenetic significance; basic functions; research opportunities. Macmillan, LondonGoogle Scholar
  68. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origins of placental ­mammals. Nature 409:614–618PubMedCrossRefGoogle Scholar
  69. Ramsey EM (1982) The placenta: human and animal. Praeger, New YorkGoogle Scholar
  70. Rawn SM, Cross JC (2008) The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Dev Biol 24:159–181PubMedCrossRefGoogle Scholar
  71. Reik W, Constancia M, Fowden A, Anderson N, Dean W, Ferguson-Smith A, Tycko B, Sibley C (2003) Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 547:35–44PubMedCrossRefGoogle Scholar
  72. Riccio A, Sparago A, Verde G, De Crescenzo A, Citro V, Cubellis MV, Ferrero GB, Silengo MC, Russo S, Larizza L, Cerrato F (2009) Inherited and sporadic epimutations at the IGF2-H19 locus in Beckwith-Wiedemann syndrome and Wilms’ tumor. Endocr Dev 14:1–9PubMedCrossRefGoogle Scholar
  73. Schröder H (1982) Structural and functional organization of the placenta from the physiological point of view. Bibl Anat 22:4–12PubMedGoogle Scholar
  74. Sibley CP, Coan PM, Ferguson-Smith AC, Dean W, Hughes J, Smith P, Reik W, Burton GJ, Fowden AL, Constancia M (2004) Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc Natl Acad Sci USA 101:8204–8208PubMedCrossRefGoogle Scholar
  75. Smith RJ, Dean W, Konfortova G, Kelsey G (2003) Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res 13:558–569PubMedCrossRefGoogle Scholar
  76. Starck D (1975) Embryologie. Thieme, StuttgartGoogle Scholar
  77. Steven DH (ed) (1975) Comparative placentation. Academic, New YorkGoogle Scholar
  78. Van der Heijden FL (1981) Compensation mechanisms for experimental reduction of the functional capacity in the guinea pig placenta. I. Changes in the maternal and fetal placenta vascularization. Acta Anat (Basel) 111:352–358CrossRefGoogle Scholar
  79. Vogel P (2005) The current molecular phylogeny of Eutherian mammals challenges previous interpretations of placental evolution. Placenta 26:591–596PubMedCrossRefGoogle Scholar
  80. Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R (2006) Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci USA 103:3203–3208PubMedCrossRefGoogle Scholar
  81. Wimsatt WA (1962) Some aspects of the comparative anatomy of the mammalian placenta. Am J Obstet Gynecol 84:1568–1594PubMedGoogle Scholar
  82. Wimsatt WA, Enders AC (1980) Structure and morphogenesis of the uterus placenta, and paraplacental organs of the neotropical disc-winged bat Thyroptera tricolor spix (Microchiroptera: Thy­ropteridae). Am J Anat 159:209–243PubMedCrossRefGoogle Scholar
  83. Wislocki GB, Enders RK (1941) The placentation of the bottle-nosed porpoise (Tursiops truncatus). Am J Anat 68:97–125CrossRefGoogle Scholar
  84. Wooding FBP (1992) The synepitheliochorial placenta of ruminants: binucleate cell fusion and hormone production. Placenta 13:101–113PubMedCrossRefGoogle Scholar
  85. Wooding FP, Burton GJ (2008) Comparative placentation: structures, functions and evolution. Springer, BerlinCrossRefGoogle Scholar
  86. Wooding FBP, Chamber SG, Perry JS, George M, Heap RB (1980) Migration of binucleate cells in the sheep placenta during normal pregnancy. Anat Embryol (Berl) 158:361–370CrossRefGoogle Scholar
  87. Wooding FB, Stewart F, Mathias S, Allen WR (2005) Placentation in the African elephant, loxodonta africanus: III. Ultrastructural and functional features of the placenta. Placenta 26:449–470PubMedCrossRefGoogle Scholar
  88. Yamazawa K, Kagami M, Nagai T, Kondoh T, Onigata K, Maeyama K, Hasegawa T, Hasegawa Y, Yamazaki T, Mizuno S, Miyoshi Y, Miyagawa S, Horikawa R, Matsuoka K, Ogata T (2008) Molecular and clinical findings and their correlations in silver-Russell syndrome: implications for a positive role of IGF2 in growth determination and differential imprinting regulation of the IGF2-H19 domain in bodies and placentas. J Mol Med 86:1171–1181PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kurt Benirschke
    • 1
  • Graham J. Burton
    • 2
  • Rebecca N. Baergen
    • 3
  1. 1.La JollaUSA
  2. 2.Physiological LaboratoryUniversity of Cambridge Centre for Trophoblast ResearchCambridgeUK
  3. 3.Department of Pathology and Laboratory Medicine New York-Presbyterian HospitalWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations