Planning in Collaborative Stigmergic Workspaces

  • Constantin-Bala Zamfirescu
  • Ciprian Candea
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6923)


The paper investigates how the engineered capabilities of structuring the knowledge encoded in collaborative workspaces affect the collective intelligence of its users. The investigation is made for the particular case of collaborative planning and is grounded on the theoretical framework of stigmergic systems. The knowledge structure encoded in collaborative workspaces in the form of a conceptual hierarchical task network is analysed by building a multi-agent simulation to evaluate the performance of different planning strategies. The results show that different representational complexities of collaborative planning knowledge have a great impact over the collective intelligence when the users are interacting directly or indirectly.


collaborative planning stigmergic systems agent-based simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grassé, P.P.: La theorie de la stigmergie: essai d’interpretation du comportement des termites constructeurs. J. Insectes Sociaux 6, 41–81 (1953)CrossRefGoogle Scholar
  2. 2.
    Susi, T., Ziemke, T.: Social Cognition, Artefacts, and Stigmergy: A Comparative Analysis of Theoretical Frameworks for the Understanding of Artefact-mediated Collaborative Activity. J. Cognitive Systems Research 2, 273–290 (2001)CrossRefGoogle Scholar
  3. 3.
    Parunak, V.D.: A Survey of Environments and Mechanisms for Human-Human Stigmergy. In: Weyns, D., Michel, F., Parunak, V.D. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 163–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Elliott, M.A.: Stigmergic Collaboration: A Theoretical Framework for Mass Collaboration. PhD Thesis, Victorian College of the Arts, The University of Melbourne (2007)Google Scholar
  5. 5.
    Parunak, V.D., Brueckner, S.A.: The Cognitive Aptitude of Swarming Agents (2009),
  6. 6.
    Parunak, V.D., Belding, T.C., Bisson, R., Brueckner, S.A., Downs, E., Hilscher, R.: Stigmergic reasoning over hierarchical task networks. In: 8th International Conference on Autonomous Agents and Multi-Agent Systems, pp. 1195–1196. ACM Press, New York (2009)Google Scholar
  7. 7.
    Heylighen, F.: Collective Intelligence and its Implementation on the Web: algorithms to develop a collective mental map. J. Comput. and Math. Org. Theory 5, 253–280 (1999)CrossRefMATHGoogle Scholar
  8. 8.
    Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive Stigmergy: A Framework Based on Agents and Artifacts. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Zamfirescu, C.B., Filip, F.G.: Swarming models for facilitating collaborative decisions. J. of Computers, Comm. and Control V, 125–137 (2010)CrossRefGoogle Scholar
  10. 10.
    Ghallab, M., Nau, D., Traverso, P.: Hierarchical Task Network Planning. Automated Planning: Theory and Practice. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  11. 11.
    Russell, S.J., Norvig, P.: AI: A Modern Approach, 2nd edn. Prentice-Hall, N. Jersey (2003)MATHGoogle Scholar
  12. 12.
    Luce, D.: Individual Choice Behaviour. Wesley (1959)Google Scholar
  13. 13.
    Wilensky, U.: NetLogo (1999),
  14. 14.
    Carley, K.M.: On Generating Hypotheses Using Computer Simulations. J. Systems Engineering 2(2), 69–77 (1999)CrossRefGoogle Scholar
  15. 15.
    Guerin, S., Kunkle, D.: Emergence of constraint in self-organizing systems. J. Nonlinear Dynamics, Psychology, and Life Sciences 8(2), 131–146 (2004)Google Scholar
  16. 16.
    Parunak, V.D., Brueckner, S.A., Sauter, J.A., Matthews, R.: Global convergence of local agent Behaviors. In: 4th International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 305–312. ACM Press, New York (2005)Google Scholar
  17. 17.
    Hwang, H., Guynes, J.: The effect of group size on group performance in computer supported decision making: J. Information and Management 26, 189–198 (1994)CrossRefGoogle Scholar
  18. 18.
    Zamfirescu, C.B., Duta, L., Candea, C.: Implementing the “Design for Emergence” Principle in GDSS. In: Respício, A., et al. (eds.) Bridging the Socio-technical Gap in Decision Support Systems - Challenges for the Next Decade, pp. 61–72. IOS Press, Amsterdam (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Constantin-Bala Zamfirescu
    • 1
  • Ciprian Candea
    • 2
  1. 1.Faculty of Engineering, Department of Computer Science and Automatic Control“Lucian Blaga” University of SibiuSibiuRomania
  2. 2.“Research and Development” DepartmentRopardo SRLSibiuRomania

Personalised recommendations