Attribute Selection-Based Recommendation Framework for Long-Tail User Group: An Empirical Study on MovieLens Dataset

  • Jason J. Jung
  • Xuan Hau Pham
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6922)


Most of recommendation systems have serious difficulties on providing relevant services to the “short-head” users who have shown intermixed preferential patterns. In this paper, we assume that such users (which are referred to as long-tail users) can play an important role of information sources for improving the performance of recommendation. Attribute reduction-based mining method has been proposed to efficiently select the long-tail user groups. More importantly, the long-tail user groups as domain experts are employed to provide more trustworthy information. To evaluate the proposed framework, we have integrated MovieLens dataset with IMDB, and empirically shown that the long-tail user groups are useful for the recommendation process.


User modeling Recommendation Long-tail group Attribute reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brusilovsky, P., Sosnovsky, S., Yudelson, M., Kumar, A., Hsiao, S.: User model integration in a distributed adaptive e-learning system. In: Berkovsky, S., Carmagnola, F., Heckmann, D., Kuflik, T., Krüger, A. (eds.) Proceedings of the 6th International Workshop on Ubiquitous User Modeling, pp. 1–10 (2008)Google Scholar
  2. 2.
    del Olmo, F.H., Gaudioso, E., Boticario, J.: A multiagent approach to obtain open and flexible user models in adaptive learning communities. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 203–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Fisk, D.: An application of social filtering to movie recommendation. In: Nwana, H.S., Azarmi, N. (eds.) Software Agents and Soft Computing: Towards Enhancing Machine Intelligence Concepts and Applications. LNCS, vol. 1198, pp. 116–131. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    John, R.I., Mooney, G.J.: Fuzzy user modeling for information retrieval on the world wide web. Knowledge and Information Systems 3(1), 81–95 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Jung, J.J.: Ontological framework based on contextual mediation for collaborative information retrieval. Information Retrieval 10(1), 85–109 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jung, J.J.: Ontology-based context synchronization for ad-hoc social collaborations. Knowledge-Based Systems 21(7), 573–580 (2008)CrossRefGoogle Scholar
  7. 7.
    Jung, J.J.: Query transformation based on semantic centrality in semantic social network. Journal of Universal Computer Science 14(7), 1031–1047 (2008)Google Scholar
  8. 8.
    Jung, J.J.: Consensus-based evaluation framework for cooperative information retrieval systems. Knowledge and Information Systems 18(2), 199–211 (2009)CrossRefGoogle Scholar
  9. 9.
    Jung, J.J.: Ontology mapping composition for query transformation on distributed environments. Expert Systems with Applications 37(12), 8401–8405 (2010)CrossRefGoogle Scholar
  10. 10.
    Jung, J.J.: Reusing ontology mappings for query segmentation and routing in semantic peer-to-peer environment. Information Sciences 180(17), 3248–3257 (2010)CrossRefGoogle Scholar
  11. 11.
    Kok, A.J.: A review and synthesis of user modelling in intelligent systems. Knowledge Engineering Review 6(1), 21–47 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference (WWW 2010), pp. 285–295. ACM, New York (2001)Google Scholar
  13. 13.
    Sathe, N.A., Lee, P., Giuse, N.B.: A power information user (piu) model to promote information integration in tennessee’s public health community. Journal of Medical Library Association 92(4), 459–464 (2004)Google Scholar
  14. 14.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Advances in Artificial Intelligence 2009(4), 2 (2009)Google Scholar
  15. 15.
    Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Feature-Weighted User Model for Recommender Systems. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS(LNAI), vol. 4511, pp. 97–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Koren, J.: Efficient bayesian hierarchical user modeling for recommendation system. In: Kraaij, W., de Vries, A.P., Clarke, C.L.A., Fuhr, N., Kando, N. (eds.) Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 47–54. ACM, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jason J. Jung
    • 1
  • Xuan Hau Pham
    • 1
  1. 1.Department of Computer EngineeringYeungnam UniversityGyeongsanKorea

Personalised recommendations