Generating and Postprocessing of Biclusters from Discrete Value Matrices

  • Marcin Michalak
  • Magdalena Stawarz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6922)

Abstract

This paper presents a new approach for the biclustering problem. For this purpose new notions like half-bicluster and biclustering matrix were developed. Results obtained with the algorithm BicDM (Biclustering of Discrete value Matrix) were compared with some other methods of biclustering. In this article the new algorithm is applied for binary data but there is no limitation to use it for other discrete type data sets. In this paper also two postprocessing steps are defined: generalization and filtering. In the first step biclusters are generalized and after that only those which are the best become the final set - weak biclusters are filtered from the set. The usage of the algorithm makes it possible to improve the description of data with the reduction of bicluster number without the loss of information. The postprocessing was performed on the new algorithm results and compared with other biclustering methods.

Keywords

machine learning data mining biclustering postprocessing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayadi, W., Elloumi, M., Hao, J.K.: A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data. BioData Mining 9 (2009)Google Scholar
  2. 2.
    Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering Local Structure in Gene Expression Data: The Order-Preserving Sub-Matrix Problem. J. of Comput. Biol. 10(3-4), 373–384 (2003)CrossRefGoogle Scholar
  3. 3.
    Chang, F.C., Huang, H.C.: A refactoring method for cache-efficient swarm intelligence algorithms. Inf. Sci. (2010), doi:10.1016/j.ins.2010.02.025 (in press, corrected proof)Google Scholar
  4. 4.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. of the 8th Int. Conf. On Intell. Systems For Molecular Biology, pp. 93–103 (2000)Google Scholar
  5. 5.
    Cyran, K.: Modified Indiscernibility Relation in the Theory of Rough Sets with Real-Valued Attributes: Application to Recognition of Fraunhofer Diffraction Patterns. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 14–34. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Cyran, K.: Quasi Dominance Rough Set Approach in Testing for Traces of Natural Selection at Molecular Level. Advanc. in Intell. and Soft. Comput. 59, 163–172 (2009)CrossRefMATHGoogle Scholar
  7. 7.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation of a preference relation by dominance relations. Eur. J. of Oper. Res. 117, 63–83 (1999)CrossRefMATHGoogle Scholar
  8. 8.
    Hartigan, J.A.: Direct clustering of a data matrix. J. of the Am. Stat. Assoc. 67, 123–129 (1972)CrossRefGoogle Scholar
  9. 9.
    Madeira, S.C., Oliveira, A.L.: Biclustering Algorithms for Biological Data Analysis: A Survey. IEEE/ACM Trans. on Comput. Biol. and Bioinforma. 1, 24–45 (2004)CrossRefGoogle Scholar
  10. 10.
    Mirkin, B.: Mathematical Classification and Clustering. J. of the Oper. Res. 48, 852–853 (1997)CrossRefGoogle Scholar
  11. 11.
    Murali, T.M., Kasif, S.: Extracting Conserved Gene Expression Motifs from Gene Expression Data. In: Pacific Symposium on Biocomputing, pp. 77–88 (2003)Google Scholar
  12. 12.
    Nisar, A., Ahmad, W., Liao, W., Choudhary, A.: High Performance Parallel/Distributed Biclustering Using Barycenter Heuristic. In: Proc. of SIAM Int. Conf. on Data Mining, pp. 1050–1061 (2009)Google Scholar
  13. 13.
    Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129 (2006)CrossRefGoogle Scholar
  14. 14.
    Sayoud, H., Ouamour, S.: Speaker Clustering of Stereo Audio Documents Based on Sequential Gathering Process. J. of Inf. Hiding. and Multimed. Signal Process. 4, 344–360 (2010)Google Scholar
  15. 15.
    Sikora, M.: An algorithm for generalization of decision rules by joining. Found. on Comput. and Decis. Sci. 30, 227–239 (2005)Google Scholar
  16. 16.
    Sikora, M.: Decision Rule-Based Data Models Using TRS and NetTRS – Methods and Algorithms. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XI. LNCS, vol. 5946, pp. 130–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Sikora, M.: Filtering of decision rules using rules quality function. Stud. Inform. 4(46), 5–21 (2001)Google Scholar
  18. 18.
    Tanay, A., Sharan, R., Shamir, R.: Biclustering algorithms: A survey. In: Handbook of computational molecular biology. Chapman Hall/CRC Press (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marcin Michalak
    • 1
  • Magdalena Stawarz
    • 1
  1. 1.Silesian University of TechnologyGliwicePoland

Personalised recommendations