Frontiers in Numerical Analysis - Durham 2010 pp 149-225 | Cite as
Introduction to Applications of Numerical Analysis in Time Domain Computational Electromagnetism
Abstract
We discuss two techniques for the solution of the time domain Maxwell system. The first is a partial differential equation based approach using conforming finite elements and implicit time stepping that is suitable when stiff problems are encountered, and where the medium is inhomogeneous. In particular we analyze the use of edge elements and certain A-stable schemes using the Fourier-Laplace transform. For a homogeneous medium, an integral equation approach can be used and we describe and analyze the convolution quadrature method applied to the electric field integral equation. In either case we emphasize that the convergence analysis depends on energy estimates for the continuous problem.
Keywords
Boundary Integral Equation Discontinuous Galerkin Discontinuous Galerkin Method Finite Difference Time Domain Edge ElementPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
Our research is supported in part by a grant from NSF (DMS-0811104). PM would like to thank BICOM at Brunel University, UK for a visiting position during the writing of most of this paper.
References
- 1.T. Abboud, J.-C. Nédélec, and J. Volakis, Stable solution of the retarded potential equations, in Proc. 17th Ann. Rev. Progress in Appl. Comp. Electromagnetics, Monterey, CA, 2001, pp. 146–151.Google Scholar
- 2.J. Adam, A. Serveniere, J. Nédélec, and P. Raviart, Study of an implicit scheme for integrating Maxwell’s equations, Comput. Meth. Appl. Mech. Eng., 22 (1980), pp. 327–46.Google Scholar
- 3.A. Aimi, M. Diligenti, C. Guardasoni, I. Mazzieri, and S. Panizzi, An energy approach to spacetime Galerkin BEM for wave propagation problems, Int. J. Numer. Meth. Eng., DOI:10.1002/nme.2660 (2009).Google Scholar
- 4.M. Ainsworth, Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, J. Comp. Phys., 198 (2004), pp. 106–130.Google Scholar
- 5.M. Ainsworth, Dispersive properties of high-order Nedelec/edge element approximation of the time-harmonic Maxwell equations, Phil. Trans. Roy. Soc. A, 362 (2004), pp. 471–91.Google Scholar
- 6.M. Ainsworth and J. Coyle, Hierarchic finite element bases on unstructured tetrahedral meshes, Int. J. Numer. Meth. Eng., 58 (2003), pp. 2103–30.Google Scholar
- 7.M. Ainsworth, P. Monk, and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin methods for the wave equation, J. Sci. Comput., 27 (2006), pp. 5–40.Google Scholar
- 8.M. Ainsworth and H. Wajid, Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration, SIAM J. Numer. Anal., 48 (2010), pp. 346–71.Google Scholar
- 9.C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Meth. Appl. Sci., 21 (1998), pp. 823–64.Google Scholar
- 10.D. Arnold, R. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006), pp. 1–155.Google Scholar
- 11.D. Arnold, R. Falk, and R. Winther, Finite element exterior calculus from Hodge theory to numerical stability, Bulletin of the American Mathematical Society, 47 (2010), pp. 281–354.Google Scholar
- 12.D. Arnold, R. Falk, and R. Winthur, Multigrid in H(div) and H(curl), Numer. Math., 85 (2000), pp. 197–217.Google Scholar
- 13.F. Assous, P. Degond, E. Heintze, P. Raviart, and J. Segreé, On a finite-element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., 109 (1993), pp. 222–37open.Google Scholar
- 14.F. Assous, P. Degond, and J. Segré, Numerical approximation of the Maxwell equations in inhomogeneous media by a p 1 conforming finite element method, J. Comput. Phys., 128 (1996), pp. 363–80.Google Scholar
- 15.F. Assous and M. Mikhaeli, Nitsche type method for approximating boundary conditions in the static maxwell equations, in Proceedings of the 26th IASTED International Conference on Modelling, Identification, and Control, MIC ’07, Anaheim, CA, USA, 2007, ACTA Press, pp. 402–407.Google Scholar
- 16.I. Babuška and S. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal., 34 (1997), pp. 2392–423.Google Scholar
- 17.A. Bachelot and A. Pujols, Equations intégrales espace-temps pour le systeème de Maxwell, C.R. Acad. Sc. Paris, Série I, 314 (1992), pp. 639–44.Google Scholar
- 18.C. Balanis, Advanced Engineering Electromagnetics, Wiley, 1989.Google Scholar
- 19.A. Bamberger and T. Ha-Duong, Formulation variationnelle espace-temps pour le calcul par potentiel retarde de la diffraction d’une onde acoustique(i), Math. Mech. in the Appl. Sci, 8 (1986), pp. 405–435.Google Scholar
- 20.L. Banjai, Multistep and multistage convolution quadrature for the wave equation: Algorithms and experiments, SIAM J. Sci. Comput., 32 (2010), pp. 2964–2994.Google Scholar
- 21.L. Banjai and W. Hackbusch, Hierarchical matrix techniques for low- and high-frequency Helmholtz problems, IMA J. Numer. Anal., 28 (2008), pp. 46–79.Google Scholar
- 22.L. Banjai and S. Sauter, Rapid solution of the wave equation in unbounded domains, SIAM J. Numer. Anal., 47 (2008), pp. 227–49.Google Scholar
- 23.R. Barthelmé, P. Ciarlet, and E. Sonnendrücker, Generalized formulations of Maxwell’s equations for numerical Vlasov-Maxwell simulations, Math. Meth. Appl. Sci., 17 (2007), pp. 659–80.Google Scholar
- 24.A. Bendali, Numerical analysis of the exterior boundary value problem for the time harmonic Maxwell equations by a boundary finite element method. Part ii: The discrete problem, Math. Comput., 43 (1984), pp. 47–68.Google Scholar
- 25.J. Bérenger, A perfectly matched layer for the absorption of electromagnetics waves, J. Comput. Phys., 114 (1994), pp. 185–200.Google Scholar
- 26.H. Bertram, Theory of Magnetic Recording, Cambridge University Press, ber94.Google Scholar
- 27.D. Biskamp, An Introduction to Magnetohydrodynamics, Cambridge University Press, 2001.Google Scholar
- 28.D. Boffi, L. Gastaldi, and A. Buffa, Convergence analysis for hyperbolic evolution problems in mixed form, Tech. Rep. 17-PV, I.M.A.T.I.-C.N.R., University of Pavia, Italy, 2005.Google Scholar
- 29.A. Bossavit, Computational Electromagnetism, Academic Press, San Diego, 1998.Google Scholar
- 30.F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991.Google Scholar
- 31.A. Buffa and S. Christiansen, A dual finite element complex on the barycentric refinement, Math. Comput., 76 (2007), pp. 1743–69.Google Scholar
- 32.A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra, Math. Meth. Appl. Sci., 24 (2001), pp. 9–30.Google Scholar
- 33.A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra, Math. Meth. Appl. Sci., 24 (2001), pp. 31–48.Google Scholar
- 34.A. Buffa, M. Costabel, and D. Sheen, On the traces of H(curl,Ω) in Lipschitz domains, J. Math. Anal. Appl., 276 (2003), pp. 845–67.Google Scholar
- 35.A. Buffa, R. Hiptmair, T. von Petersdorff, and C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains, Numer. Math., 95 (2003), pp. 459–85.Google Scholar
- 36.A. Buffa, P. Houston, and I. Perugia, Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes, J. Comput. Appl. Math., 204 (2007), pp. 317–33.Google Scholar
- 37.A. Buffa and I. Perugia, Discontinuous galerkin approximation of the Maxwell eigenproblem, SIAM J. Numer. Anal., 44 (2006), pp. 2198–226.Google Scholar
- 38.A. Buffa, G. Sangalli, and R. Vazquez, Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Meth. Appl. Mech. Eng., 199 (2010), pp. 1143–52.Google Scholar
- 39.A. Campbell, An introduction to numerical methods in superconductors, J. Supercond. Nov. Magn., (2010). DOI 10.1007/s10948-010-0895-5.Google Scholar
- 40.Q. Chen, P. Monk, D. Weile, and X. Wang, Analysis of convolution quadrature applied to the time-domain electric field integral equation. to appear in Communications in Computational Physics.Google Scholar
- 41.W. C. Chew and W. H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microwave Opt. Technol. Lett., 7 (1994), pp. 599–604.Google Scholar
- 42.S. Christiansen, Foundations of finite element methods for wave equations of Maxwell type, in Applied Wave Mathematics, E. Quak and T. Soomere, eds., Springer-Verlag, Berlin Heidelberg, 2009, pp. 335–93.Google Scholar
- 43.P. Ciarlet, The Finite Element Method for Elliptic Problems, vol. 4 of Studies In Mathematics and Its Applications, North-Holland, New York, 1978.Google Scholar
- 44.P. Ciarlet and E. Jamelot, Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries, J. Comput. Phys., 226 (2007), pp. 1122–35.Google Scholar
- 45.P. Ciarlet and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell’s equations, Numer. Math., 82 (1999), pp. 193–219.Google Scholar
- 46.B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199–224.Google Scholar
- 47.G. Cohen, Higher-order numerical methods for transient wave equations, Springer, Berlin, 2002.Google Scholar
- 48.G. Cohen, P. Joly, J. Roberts, and N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation, SIAM J. Numer. Anal., 38 (2001), pp. 2047–78.Google Scholar
- 49.G. Cohen and P. Monk, Gauss point mass lumping schemes for Maxwell’s equations, Numer. Meth. Partial Diff. Eqns., 14 (1998), pp. 63–88.Google Scholar
- 50.D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, New York, 2nd ed., 1998.Google Scholar
- 51.K. Cools, F. Andriulli, F. Olyslager, and E. Michielssen, Time domain Calderón identities and their application to the integral equation analysis of scattering by PEC objects Part I: Preconditioning, IEEE Trans. Antennas Propagat., 57 (2009), pp. 2352–64.Google Scholar
- 52.M. Costabel, Fundamentals, vol. 1 of Encyclopedia of Computational Mechanics, John Wiley & Sons, 2004, ch. Time-dependent Problems with the Boundary Integral Equation Method.Google Scholar
- 53.P. Davies, Numerical stability and convergence of approximations of retarded potential integral equations, SIAM J. Numer. Anal., 31 (1994), pp. 856–75.Google Scholar
- 54.P. Davies and D. Duncan, Averaging techniques for time-marching schemes for retarded potential integral equations, Applied Numerical Mathematics, 23 (1997), pp. 291–310.Google Scholar
- 55.L. Demkowicz, hp-adaptive finite elements for time-harmonic Maxwell equations, in Topics in Computational Wave Propagation: Direct and Inverse Problems, M. Ainsworth, P. Davies, D. Duncan, P. Martin, and B. Rynne, eds., vol. 31 of Lecture Notes in Computational Science and Engineering, Springer, 2003.Google Scholar
- 56.L. Demkowicz, P. Monk, and L. Vardapetyan, de Rham diagram for hp finite element spaces, Comput. Math. Appl., 39 (2000), pp. 29–38.Google Scholar
- 57.G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer, New York, 1976.Google Scholar
- 58.A. Elmkies and P. Joly, Elements finis d’arete et condensation de masse pour les equations de Maxwell: le cas 3D, C. R. Acad. Sci. Paris, Série 1, 325 (1997), pp. 1217–22.Google Scholar
- 59.B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31 (1977), pp. 629–51.Google Scholar
- 60.A. Ergin, B. Shanker, and E. Michielssen, The plane-wave time-domain algorithm for fast analysis of transient phenomena, IEEE Antennas and Propagation Magazine, 41 (1999), pp. 39–52.Google Scholar
- 61.L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Mathematical Modeling and Numerical Analysis, 39 (2005), pp. 1149–76.Google Scholar
- 62.A. Fisher, R. Rieben, G. Rodrigue, and D. White, A generalized mass lumping technique for vector finite-element solutions of the time-dependent maxwell equations, IEEE Trans. Antennas Propagat., 53 (2005), pp. 2900–10.Google Scholar
- 63.M. Gander, F. Magoulès, and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput., 24 (2002), pp. 36–80.Google Scholar
- 64.N. Geodel, S. Schomann, and T. W. M. Clemens, GPU accelerated Adams-Bashforth multirate discontinuous Galerkin FEM simulation of high-frequency electromagnetic fields, IEEE Trans. Mag., 46 (2010), pp. 2735–8.Google Scholar
- 65.N. Goedel, N. N. T. Warburton, and M. Clemens, Scalability of higher-order discontinuous Galerkin FEM computations for solving electromagnetic wave propagation problems on GPU clusters, IEEE Trans. Mag., 46 (2010), pp. 3469–72.Google Scholar
- 66.J. Gopalakrishnan and J. Pasciak, Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations, Math. Comput., 72 (2003), pp. 1–15.Google Scholar
- 67.V. Gradinaru and R. Hiptmair, Whitney elements on pyramids, ETNA, 8 (1999), pp. 154–68.Google Scholar
- 68.R. Graglia, D. Wilton, and A. Peterson, Higher order interpolatory vector bases for computational electromagnetics, IEEE Trans. Antennas Propagat., 45 (1997), pp. 329–342.Google Scholar
- 69.M. Grote and T. Mitkova, Explicit local time-stepping methods for Maxwell’s equations, J. Comput. Appl. Math., 234 (2010), pp. 3283–302.Google Scholar
- 70.M. Grote, A. Schneebeli, and D. Schötzau, Interior penalty discontinuous Galerkin method for Maxwell’s equations:Energy norm error estimates, IMA J. Numer. Anal., 204 (2007), pp. 375–86.Google Scholar
- 71.M. Grote, A. Schneebeli, and D. Schötzau, Interior penalty discontinuous Galerkin method for Maxwell’s equations: Optimal L 2 -norm error estimates, IMA J. Numer. Anal., 28 (2008), pp. 440–68.Google Scholar
- 72.M. Grote and D. Schoetzau, Optimal Error Estimates for the Fully Discrete Interior Penalty DG Method for the Wave Equation, JOURNAL OF SCIENTIFIC COMPUTING, 40 (2009), pp. 257–272.Google Scholar
- 73.T. Ha-Duong, On retarded potential boundary integral equations and their discretizations, in Topics in Computational Wave Propagation: Direct and Inverse Problems, M. Ainsworth, ed., Springer, 2003, pp. 301–36.Google Scholar
- 74.T. Ha-Duong, B. Ludwig, and I. Terrasse, A galerkin BEM for transient acoustic scattering by an absorbing obstacle, Int. J. Numer. Meth. Engng., 57 (2003), pp. 1845–82.Google Scholar
- 75.W. Hackbusch, W. Kress, and S. Sauter, Sparse convolution quadrature for time domain boundary integral formulations of the wave equation, IMA J. Numer. Anal., 29 (2009), pp. 158–79.Google Scholar
- 76.T. Hagstrom, Warburton, and D. Givoli, Radiation boundary conditions for time-dependent waves based on complete plane wave expansions, J. Comput. Appl. Math., 234 (2010), pp. 1988–95.Google Scholar
- 77.Y. Haugazeau and P. Lacoste, Condenstaion de la matrice masse pour les éléments finis mixtes de h(rot), Comptes Rendu, Series 1, 316 (1993), pp. 509–12.Google Scholar
- 78.Y. Heaugazeau and P. Lacoste, Lumping of the mass matrix for 1st-order mixed finite elements in h(curl), in Mathematical and Numerical Aspects of Wave Propagation, R. Kleinman, T. Angell, D. Colton, F. Santosa, and I. Stakgold, eds., SIAM, Philadelphia, 1993, pp. 259–68.Google Scholar
- 79.J. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 181 (2002), pp. 186–221.Google Scholar
- 80.R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal., 36 (1998), pp. 204–25.Google Scholar
- 81.R. Hiptmair, Discrete Hodge-operators: An algebraic perspective, Journal of Electromagnetic Waves and Applications, 15 (2001), pp. 343–4.Google Scholar
- 82.R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11 (2002), pp. 237–339.Google Scholar
- 83.H. Holter, Some experiences from FDTD analysis of infinite and finite multi-octave phased arrays, IEEE Trans. Antennas Propagat., 50 (2002), pp. 1725–31.Google Scholar
- 84.W. Kress and S. Sauter, Numerical treatment of retarded boundary integral equations by sparse panel clustering, IMA J. Numer. Anal., 28 (2008), pp. 162–85.Google Scholar
- 85.T. Lahivaara and T. Huttunen, A non-uniform basis order for the discontinuous Galerkin method of the acoustic and elastic wave equations, Applied Numerical Mathematics, 61 (2011), pp. 473–86.Google Scholar
- 86.A. Laliena and F. Sayas, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves, Numer. Math., 112 (2009), pp. 637–78.Google Scholar
- 87.P. Lax, Functional Analysis, Wiley, New York, 2002.Google Scholar
- 88.M. Lazebnik, M. Okoniewski, J. Booske, and S. Hagness, Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies, IEEE Microwave and Wireless Components Letters, 17 (2007), pp. 822–4.Google Scholar
- 89.J. Lee and B. Fornberg, Some unconditionally stable time stepping methods for the 3D Maxwell’s equations, J. Comput. Appl. Math., 166 (2004), pp. 497–523.Google Scholar
- 90.J.-F. Lee, WETD - A finite element time domain approach for solving Maxwell’s equations, IEEE Microwave and Guided Wave Lett., 4 (1994), pp. 11–3.Google Scholar
- 91.J.-F. Lee, R. Lee, and A. Cangellaris, Time-domain finite-element methods, IEEE Trans. Antennas Propagat., 45 (1997), pp. 430–42.Google Scholar
- 92.J. Li, Finite element study of the Lorentz model in metamaterials, Comput. Meth. Appl. Mech. Eng., 200 (2011), pp. 626–37.Google Scholar
- 93.J. Li, Y. Chen, and V. Elander, Mathematical and numerical study of wave propagation in negative-index materials, Comput. Meth. Appl. Mech. Eng., 197 (2008), pp. 45–8.Google Scholar
- 94.J. Li and Z. Zhang, Unified analysis of time domain mixed finite element methods for Maxwell’s equations in dispersive media, Journal of Computational Mathematics, 28 (2010), pp. 693–710.Google Scholar
- 95.C. Lubich, Convolution quadrature and discretized operational calculus. I and II, Numer. Math., 52 (1988), pp. 129–45 and 413–425.Google Scholar
- 96.C. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math., 67 (1994), pp. 365–89.Google Scholar
- 97.C. Lubich and A. Ostermann, Runge-Kutta methods for parabolic equations and convolution quadratur, Math. Comput., 60 (1993), pp. 105–31.Google Scholar
- 98.C. Makridakis and P. Monk, Time-discrete finite element schemes for Maxwell’s equations, RAIRO - Math. Model. Numer. Anal., 29 (1995), pp. 171–97.Google Scholar
- 99.W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.Google Scholar
- 100.T. W. M.Clemens, Transient eddy-current calculation with the FI-method, IEEE Trans. Mag., 35 (1999), pp. 1163–6.Google Scholar
- 101.J. Melenk and S. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comput., 79 (2010), pp. 1871–914.Google Scholar
- 102.P. Monk, Analysis of a finite element method for Maxwell’s equations, SIAM J. Numer. Anal., 29 (1992), pp. 714–29.Google Scholar
- 103.P. Monk, An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations, J. Comput. Appl. Math., 47 (1993), pp. 101–21.Google Scholar
- 104.P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, Oxford, 2003.Google Scholar
- 105.P. Monk and A. Parrott, Phase-accuracy comparisons and improved far-field estimates for 3-D edge elements on tetrahedral meshes, J. Comput. Phys., 170 (2001), pp. 614–41.Google Scholar
- 106.J. Nédélec, Mixed finite elements in \({\mathbb{R}}^{3}\), Numer. Math., 35 (1980), pp. 315–41.Google Scholar
- 107.J. Nédélec, A new family of mixed finite elements in \({\mathbb{R}}^{3}\), Numer. Math., 50 (1986), pp. 57–81.Google Scholar
- 108.N.NIGAM and J. PHILLIPS, High-order finite elements on pyramids. accepted, IMA J. Numer.Anal., 2011.Google Scholar
- 109.J. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, Prentice Hall, Upper Saddle River, NJ, third edition ed., 1996.Google Scholar
- 110.S. Rao, D. Wilton, and A. Glisson, Electromagnetic scattering by surfaces of arbitrary shap, IEEE Trans. Antennas Propagat., 30 (1982), pp. 409–18.Google Scholar
- 111.P. Raviart and J. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comput., 31 (1977), pp. 391–413.Google Scholar
- 112.R. Rieben, G. Rodrigue, and D. White, A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids, J. Comput. Phys., 204 (2005), pp. 490–519.Google Scholar
- 113.D. Riley and J. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas Propagat., (2008), pp. 3501–9.Google Scholar
- 114.T. Rylander and A. Bondeson, Stability of explicit-implicit hybrid time-stepping schemes for Maxwell’s equations, J. Comput. Phys., 179 (2002), pp. 426–438.Google Scholar
- 115.M. Schanz and H. Antes, A new visco- and elastodynamic time domain boundary element formulation, Computational Mechanics, 20 (1997), pp. 452–9.Google Scholar
- 116.S. Schomann, N. Goedel, T. Warburton, and M. Clemens, Local timestepping techniques using Taylor expansion for modeling electromagnetic wave propagation with discontinuous Galerkin-FEM, IEEE Trans. Mag., 46 (2010), pp. 3504–7.Google Scholar
- 117.W. Sha, X. Wu, Z. Huang, and M. Chen, Waveguide simulation using the high-order symplectic finite-difference time-domain scheme, Progress In Electromagnetics Research B, 13 (2009), pp. 217–56.Google Scholar
- 118.B. Shanker, A. Ergin, M. Lu, and E. Michielssen, Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm, IEEE Trans. Antennas Propagat., 51 (2003), pp. 628–41.Google Scholar
- 119.B. Shanker, A. A. Ergin, K. Aygun, and E. Michielssen, Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm, IEEE Trans. Antennas Propagat., 48 (2000), pp. 510–23.Google Scholar
- 120.S. Shaw, Finite element approximation of Maxwell’s equations with Debye memory. to appear in Advances in Numerical Analysis.Google Scholar
- 121.A. Taflove, Computational Electrodynamics, Artech House, Boston, 1995.Google Scholar
- 122.I. Terrasse, Résolution mathématique et numérique des équations de Maxwell instationnaires par une méthode de potentiels retardés, Spécialité: Mathématiques Appliquées, Ecole Polytechnique, Paris, France, 1993.Google Scholar
- 123.A. Toselli, Overlapping Schwarz methods for Maxwell’s equations in three dimensions, Numer. Math., 86 (2000), pp. 733–52.Google Scholar
- 124.X. Wang and D. Weile, Implicit Runge-Kutta methods for the discretization of time domain integral equations. IEEE Trans. Antennas Propagat., (2011), pp. 4651–63.Google Scholar
- 125.X. Wang, R. Wildman, D. Weile, and P. Monk, A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetism, IEEE Trans. Antennas Propagat., 56 (2008), pp. 2442–52.Google Scholar
- 126.J. Webb and B. Forghani, Hierarchal scalar and vector tetrahedra, IEEE Trans. Mag., 29 (1993), pp. 1495–8.Google Scholar
- 127.T. Weiland, A discretization method for the solution of Maxwell’s equations for six-component fields, Electronics and Communications AEUE, 31 (1977), pp. 116–120.Google Scholar
- 128.T. Weiland, Numerical solution of Maxwell’s equation for static, resonant and transient problems, in Studies in Electrical and Electronic Engineering 28B, T. Berceli, ed., URSI International Symposium on Electromagnetic Theory Part B, Elsevier, New York, 1986, pp. 537–42.Google Scholar
- 129.D. Weile, G. Pisharody, N.-W. Chen, B. Shanker, and E. Michielssen, A novel scheme for the solution of the time-domain integral equations of electromagnetics, IEEE Trans. Antennas Propagat., 52 (2004), pp. 283–95.Google Scholar
- 130.Wikipedia: Finite-difference time-domain method. http://en.wikipedia.org/wiki/Finite-difference-time-domain_method, 2010.
- 131.R. Wildman and D. Weile, An accurate broad-band method of moments using higher order basis functions and tree-loop decomposition, IEEE Trans. Antennas Propagat., 52 (2004), pp. 3005–11.Google Scholar
- 132.K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagat., 16 (1966), pp. 302–7.Google Scholar
- 133.A. Yilmaz, D. W. E. Michielssen, and J.-M. Jin, A fast Fourier transform accelerated marching-on-in-time algorithm for electromagnetic analysis, Electromagnetics, 21 (2001), pp. 181–97.Google Scholar
- 134.A. Yilmaz, D. Weile, E. Michielssen, and J.-M. Jin, A hierarchical FFT algorithm (HIL-FFT) for the fast analysis of transient electromagnetic scattering phenomena, IEEE Trans. Antennas Propagat., (2002).Google Scholar
- 135.J. Zhao, Analysis of the finite element method for time-dependent Maxwell problems, Math. Comput., 247 (2003), pp. 1089–105.Google Scholar