On 3-Nilpotent Obstructions to π1 Sections for \( \mathbb{P}^{1}_\mathbb{Q}\)−{0,1, \(\infty\)}

Conference paper
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 2)

Abstract

We study which rational points of the Jacobian of k 1 − { 0, 1, } can be lifted to sections of geometrically 3-nilpotent quotients of étale π1 over the absolute Galois group. This is equivalent to evaluating certain triple Massey products of elements of k ⊆ H1(G k , (1)) or H1(G k , ∕ 2). For k = p or \(\mathbb{R}\), we give a complete mod 2 calculation. This permits some mod 2 calculations for k = . These are computations of obstructions of Jordan Ellenberg. 1 − { 0, 1, }

Keywords

Conjugacy Class Fundamental Group Rational Point Tangential Point Lower Central Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. And89.
    G. W. Anderson. The hyperadelic gamma function. Invent. Math., 95(1):63–131, 1989.CrossRefMATHMathSciNetGoogle Scholar
  2. Bro94.
    K. S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer, New York, 1994. Corrected reprint of the 1982 original.Google Scholar
  3. CF67.
    Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union. Edited by J. W. S. Cassels and A. Fröhlich. Academic Press, London, 1967.Google Scholar
  4. Col89.
    R. F. Coleman. Anderson-Ihara theory: Gauss sums and circular units. In Algebraic number theory, volume 17 of Adv. Stud. Pure Math., pages 55–72. Academic Press, Boston, MA, 1989.Google Scholar
  5. Del89.
    P. Deligne. Le groupe fondamental de la droite projective moins trois points. In Galois groups over \(\mathbb{Q}\) (Berkeley, CA, 1987), volume 16 of Math. Sci. Res. Inst. Publ., pages 79–297. Springer, New York, 1989.Google Scholar
  6. Dwy75.
    W. G. Dwyer. Homology, Massey products and maps between groups. J. Pure Appl. Algebra, 6(2):177–190, 1975.CrossRefMATHMathSciNetGoogle Scholar
  7. Ell00.
    J. Ellenberg. 2-nilpotent quotients of fundamental groups of curves. Preprint, 2000.Google Scholar
  8. Hab78.
    K. Haberland. Galois cohomology of algebraic number fields. VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. With two appendices by Helmut Koch and Thomas Zink, 145.Google Scholar
  9. Hat02.
    A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.MATHGoogle Scholar
  10. Hos10.
    Y. Hoshi. Existence of nongeometric pro-p Galois sections of hyperbolic curves. Publ. RIMS Kyoto Univ. 46:1–19, 2010.MathSciNetGoogle Scholar
  11. Iha91.
    Y. Ihara. Braids, Galois groups, and some arithmetic functions. In Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 99–120, Tokyo, 1991. Math. Soc. Japan.Google Scholar
  12. Iha94.
    Y. Ihara. On the embedding of Gal(Q ∕ Q) into GT. In The Grothendieck theory of dessins d’enfants (Luminy, 1993), volume 200 of London Math. Soc. Lecture Note Ser., pages 289–321. Cambridge Univ. Press, Cambridge, 1994. With an appendix: the action of the absolute Galois group on the moduli space of spheres with four marked points by Michel Emsalem and Pierre Lochak.Google Scholar
  13. IKY87.
    Y. Ihara, M. Kaneko, and A. Yukinari. On some properties of the universal power series for Jacobi sums. In Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986), volume 12 of Adv. Stud. Pure Math., pages 65–86. North-Holland, Amsterdam, 1987.Google Scholar
  14. Laz54.
    M. Lazard. Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. Ecole Norm. Sup. (3), 71:101–190, 1954.Google Scholar
  15. Mil71.
    J. Milnor. Introduction to algebraic K-theory. Princeton University Press, Princeton, N.J., 1971. Annals of Mathematics Studies, No. 72.Google Scholar
  16. Mil80.
    J. S. Milne. Étale cohomology, volume 33 of Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 1980.Google Scholar
  17. MKS04.
    W. Magnus, A. Karrass, and D. Solitar. Combinatorial group theory. Dover Publications Inc., Mineola, NY, second edition, 2004. Presentations of groups in terms of generators and relations.Google Scholar
  18. Nak99.
    H. Nakamura. Tangential base points and Eisenstein power series. In Aspects of Galois theory (Gainesville, FL, 1996), volume 256 of London Math. Soc. Lecture Note Ser., pages 202–217. Cambridge Univ. Press, Cambridge, 1999.Google Scholar
  19. NSW08.
    J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008.Google Scholar
  20. Pop10.
    F. Pop. On the birational p-adic section conjecture. Compos. Math., 146(3):621–637, 2010.CrossRefMATHMathSciNetGoogle Scholar
  21. Ser88.
    J.-P. Serre. Algebraic groups and class fields, volume 117 of Graduate Texts in Mathematics. Springer, New York, 1988. Translated from the French, x+207.Google Scholar
  22. Ser02.
    J.-P. Serre. Galois cohomology. Springer Monographs in Mathematics. Springer, Berlin, english edition, 2002. Translated from the French by Patrick Ion and revised by the author.Google Scholar
  23. SGA1.
    A. Grothendieck. Revêtements étale et groupe fondamental (SGA 1). Séminaire de géométrie algébrique du Bois Marie 1960-61, directed by A. Grothendieck, augmented by two papers by Mme M. Raynaud, Lecture Notes in Math. 224, Springer-Verlag, Berlin-New York, 1971. Updated and annotated new edition: Documents Mathématiques 3, Société Mathématique de France, Paris, 2003.Google Scholar
  24. Tat76.
    J. Tate. Relations between K 2 and Galois cohomology. Invent. Math., 36:257–274, 1976.CrossRefMATHMathSciNetGoogle Scholar
  25. Vog04.
    D. Vogel. Massey products in the Galois cohomology of number fields. Thesis: Universität Heidelberg, 2004.MATHGoogle Scholar
  26. Wic10.
    K. Wickelgren. 2-nilpotent real section conjecture. Preprint arXiv:1006.0265, 2010.Google Scholar
  27. Zar74.
    Yu. G. Zarkhin. Noncommutative cohomology and Mumford groups. Mat. Zametki, 15:415–419, 1974.MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations