Advertisement

Analyzing Key Factors of Human Resources Management

  • Lourdes Sáiz
  • Arturo Pérez
  • Álvaro Herrero
  • Emilio Corchado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6936)

Abstract

This study presents the application of an unsupervised neural projection model for the analysis of Human Resources (HR) from a Knowledge Management (KM) standpoint. This work examines the critical role that the acquisition and retention of specialized employees play in Hi-tech companies, particularly following the configuration approach of Strategic HR Management. From the projections obtained through the connectionist models, experts in the field may extract conclusions related to some key factors of the HR Management. One of the main goals is to deploy improvement and efficiency actions in the implantation and execution of the HR practices in firms. The proposal is validated by means of an empirical study on a real case study related to the Spanish Hi-tech sector.

Keywords

Unsupervised Neural Networks Knowledge Management Human Resources Management Acquisition & Retention 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sivan, Y.Y.: Nine Keys to a Knowledge Infrastructure: A Proposed Analytic Framework for Organizational Knowledge Management. In: WebNet 2000 - World Conference on the WWW and Internet, pp. 495–500. AACE (2000)Google Scholar
  2. 2.
    Shu-Mei, T.: The Effects of Information Technology on Knowledge Management Systems. Expert Systems with Applications: An International Journal 35(1-2), 150–160 (2008)CrossRefGoogle Scholar
  3. 3.
    Russell, S.J., Norvig, P.: Artificial Intelligence: a Modern Approach. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  4. 4.
    Herrero, Á., Corchado, E., Sáiz, L., Abraham, A.: DIPKIP: A Connectionist Knowledge Management System to Identify Knowledge Deficits in Practical Cases. Computational Intelligence 26(1), 26–56 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Sáiz, L., Pérez, A.: Formación de las Capacidades de Creación de Conocimiento y Flexibilidad Organizativa en Empresas de Alta Tecnología. In: 4th International Conference on Industrial Engineering and Industrial Management (2010)Google Scholar
  6. 6.
    Spanish National Institute of Statistics, http://www.ine.es/
  7. 7.
    Soo, C.W., Devinney, T.M., Midgley, D.F.: External Knowledge Acquisition, Creativity and Learning in Organisational Problem Solving. International Journal of Technology Management 38(1), 137–159 (2007)CrossRefGoogle Scholar
  8. 8.
    Akgün, A.E., Keskin, H., Byrne, J.C., Aren, S.: Emotional and Learning Capability and their Impact on Product Innovativeness and Firm Performance. Technovation 27(9), 501–513 (2007)CrossRefGoogle Scholar
  9. 9.
    Maranto-Vargas, D., Rangel, R.G.T.: Development of Internal Resources and Capabilities as Sources of Differentiation of SME under Increased Global Competition: A Field Study in Mexico. Technol. Forecast. Soc. Chang. 74(1), 90–99 (2007)CrossRefGoogle Scholar
  10. 10.
    Smith, K.G., Collins, C.J., Clark, K.D.: Existing Knowledge, Knowledge Creation Capability, and the Rate of New Product Introduction in High-Technology Firms. Academy of Management Journal 48, 346–357 (2005)CrossRefGoogle Scholar
  11. 11.
    Grant, R.M.: Toward a Knowledge-based Theory of the Firm. Strategic Management Journal 17(10), 109–122 (1996)CrossRefGoogle Scholar
  12. 12.
    Kamoche, K.N.: Managing People in Turbulent Economic Times: A Knowledge-creation and Appropriation Perspective. Asia Pacific Journal of Human Resources 44(1), 25 (2006)CrossRefGoogle Scholar
  13. 13.
    Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company. Oxford Press, Oxford (1995)Google Scholar
  14. 14.
    Collins, C.J.: Strategic Human Resource Management and Knowledge-creation Capability: Examining the Black Box between HR and Firm Performance. PhD Thesis. Robert H. Smith School of Business. University of Maryland (2000)Google Scholar
  15. 15.
    Dolan, S.L., Mach, M., Olivera, V.S.: HR Contribution to a Firm’s Success Examined from a Configurational Perspective: An Exploratory Study Based on the Spanish CRANET Data. Management Review 16(2), 272 (2005)Google Scholar
  16. 16.
    Hotelling, H.: Analysis of a Complex of Statistical Variables into Principal Components. Journal of Education Psychology 24, 417–444 (1933)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pearson, K.: On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine 2(6), 559–572 (1901)CrossRefzbMATHGoogle Scholar
  18. 18.
    Friedman, J.H., Tukey, J.W.: A Projection Pursuit Algorithm for Exploratory Data-Analysis. IEEE Transactions on Computers 23(9), 881–890 (1974)CrossRefzbMATHGoogle Scholar
  19. 19.
    Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining and Knowledge Discovery 8(3), 203–225 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Corchado, E., Han, Y., Fyfe, C.: Structuring Global Responses of Local Filters Using Lateral Connections. Journal of Experimental & Theoretical Artificial Intelligence 15(4), 473–487 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Corchado, E., Fyfe, C.: Connectionist Techniques for the Identification and Suppression of Interfering Underlying Factors. International Journal of Pattern Recognition and Artificial Intelligence 17(8), 1447–1466 (2003)CrossRefGoogle Scholar
  22. 22.
    Seung, H.S., Socci, N.D., Lee, D.: The Rectified Gaussian Distribution. In: Advances in Neural Information Processing Systems, vol. 10, pp. 350–356 (1998)Google Scholar
  23. 23.
    Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  24. 24.
    Fyfe, C.: A Neural Network for PCA and Beyond. Neural Processing Letters 6(1-2), 33–41 (1997)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Har, W.C., In, T.B., Phaik, L.S., Hsien, L.V.: The Impact of HRM Practices on KM: A Conceptual Model. Journal of Applied Sciences Research 6(12), 6281–6291 (2010)Google Scholar
  26. 26.
    Zheng, W., Yang, B., McLean, G.N.: Linking Organizational Culture, Structure, Strategy, and Organizational Effectiveness: Mediating Role of Knowledge Management. Journal of Business Research 63(7), 763–771 (2010)CrossRefGoogle Scholar
  27. 27.
    Liao, H., Toya, K., Lepak, D.P., Hong, Y.: Do They See Eye to Eye? Management and Employee Perspectives of High-Performance Work Systems and Influence Processes on Service Quality. Journal of Applied Psychology 94(2), 371–391 (2009)CrossRefGoogle Scholar
  28. 28.
    Chen, C.-J., Huang, J.-W.: Strategic Human Resource Practices and Innovation Performance - The Mediating Role of Knowledge Management Capacity. Journal of Business Research 62(1), 104–114 (2009)CrossRefGoogle Scholar
  29. 29.
    Theriou, G.N., Chatzoglou, P.D.: Enhancing Performance through Best HRM Practices, Organizational Learning and Knowledge Management: A Conceptual Framework. European Business Review 20(3), 185–207 (2008)CrossRefGoogle Scholar
  30. 30.
    Yin, H.: ViSOM - a Novel Method for Multivariate Data Projection and Structure Visualization. IEEE Transactions on Neural Networks 13(1), 237–243 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lourdes Sáiz
    • 1
  • Arturo Pérez
    • 2
  • Álvaro Herrero
    • 1
  • Emilio Corchado
    • 3
  1. 1.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  2. 2.Investigador Programa Torres QuevedoTTT Diseño, Comunicación y ContenidosBurgosSpain
  3. 3.Departamento de Informática y AutomáticaUniversidad de SalamancaSalamancaSpain

Personalised recommendations