Advertisement

Infeasibility Driven Evolutionary Algorithm with ARIMA-Based Prediction Mechanism

  • Patryk Filipiak
  • Krzysztof Michalak
  • Piotr Lipinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6936)

Abstract

This paper proposes an improvement of evolutionary algorithms for dynamic objective functions with a prediction mechanism based on the Autoregressive Integrated Moving Average (ARIMA) model. It extends the Infeasibility Driven Evolutionary Algorithm (IDEA) that maintains a population of feasible and infeasible solutions in order to react on changing objectives faster. Combining IDEA with ARIMA leads to a more efficient evolutionary algorithm that reacts faster to the changing objectives which profits from using information coming from the prediction mechanism and remains one time instant ahead of the original algorithm. Preliminary experiments performed on popular benchmark problems confirm that the IDEA-ARIMA outperforms the original IDEA algorithm in many cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Box, G.E.P., Jenkins, G.M.: Time series analysis: Forecasting and control. Revised edition. Holden-Day, San Francisco (1976)zbMATHGoogle Scholar
  2. 2.
    Bui, L.T., Abbass, H.A., Branke, J.: Multiobjective optimization for dynamic environments. In: Proceedings of Congress on Evolutionary Computation, pp. 2349–2356 (2005)Google Scholar
  3. 3.
    Coello Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evolutionary Computation 8(3), 256–279 (2004)CrossRefGoogle Scholar
  4. 4.
    Farina, M., Deb, K., Amato, P.: Dynamic Multiobjective Optimization Problems: Test Cases, Approximations and Applications. IEEE Trans. Evol. Comp. 8(5) (2004)Google Scholar
  5. 5.
    Greeff, M., Engelbrecht, A.P.: Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 2917–2924. IEEE, Los Alamitos (2008)Google Scholar
  6. 6.
    Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. In: Proceedings of the GECCO 2006, pp. 1201–1208. ACM, New York (2006)Google Scholar
  7. 7.
    Nguyen, T., Yao, X.: Benchmarking and solving dynamic constrained problems. In: IEEE Congress on Evolutionary Computation, CEC 2009 (2009)Google Scholar
  8. 8.
    Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation, CEC 2009, pp. 3127–3134 (2009)Google Scholar
  9. 9.
    Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 832–846. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN V 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Patryk Filipiak
    • 1
  • Krzysztof Michalak
    • 2
  • Piotr Lipinski
    • 1
  1. 1.Institute of Computer ScienceUniversity of WroclawWroclawPoland
  2. 2.Institute of Business InformaticsWroclaw University of EconomicsWroclawPoland

Personalised recommendations