Logistic Fitting Method for Detecting Onset and Cessation of Tree Stem Radius Increase

  • Mark J. Brewer
  • Mika Sulkava
  • Harri Mäkinen
  • Mikko Korpela
  • Pekka Nöjd
  • Jaakko Hollmén
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6936)

Abstract

Dendrometers are devices which measure the stem radius of a tree continuously. We studied the use of logistic and generalised logistic models for exploring dendrometer data and for automatically determining the onset and cessation dates of radial increase. We used data measured in two stands in southern Finland to test the performance of the models. In the detection task, the generalised logistic models performed well compared to earlier approaches. In addition, the exploratory analysis revealed distinct differences between growth patterns of trees in different calendar years.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. Chapman and Hall, Boca Raton (1984)MATHGoogle Scholar
  2. 2.
    Deslauriers, A., Rossi, S., Anfodillo, T.: Dendrometer and inta-annual tree growth: What kind of information can be inferred. Dendrochronologia 25, 113–124 (2007)CrossRefGoogle Scholar
  3. 3.
    Downes, G., Beadle, C., Worledge, D.: Daily stem growth patterns in irrigated Eucalyptus globules and E. nitens in relation to climate. Trees 14, 102–111 (1999)Google Scholar
  4. 4.
    Korpela, M., Mäkinen, H., Nöjd, P., Hollmén, J., Sulkava, M.: Automatic detection of onset and cessation of tree stem radius increase using dendrometer data. Neurocomputing 73(10-12), 2039–2046 (2010)CrossRefGoogle Scholar
  5. 5.
    Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.J.: WinBUGS—a Bayesian modelling framework: concepts, structure and extensibility. Statistics and Computing 10, 325–337 (2000)CrossRefGoogle Scholar
  6. 6.
    Mäkinen, H., Nöjd, P., Saranpää, P.: Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiology 23, 959–968 (2003)CrossRefGoogle Scholar
  7. 7.
    Pesonen, E., Mielikäinen, K., Mäkinen, H.: A new girth band for measuring stem diameter changes. Forestry 77, 431–439 (2004)CrossRefGoogle Scholar
  8. 8.
    Pinheiro, J.C., Bates, D.M.: Mixed-effects models in S and SPLUS. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  9. 9.
    Savidge, R.A.: Xylogenesis, genetic and environmental regulation (review). IAWA Journal 17, 269–310 (1996)CrossRefGoogle Scholar
  10. 10.
    Sulkava, M., Mäkinen, H., Nöjd, P., Hollmén, J.: Automatic detection of onset and cessation of tree stem radius increase using dendrometer data and CUSUM charts. In: Lendasse, A. (ed.) Proceedings of European Symposium on Time Series Prediction – ESTSP 2008, pp. 77–86. Helsinki University of Technology, Multiprint Oy/Otamedia, Porvoo, Finland (2008)Google Scholar
  11. 11.
    Verbeke, G., Lesaffre, E.: A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association 91, 217–221 (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mark J. Brewer
    • 1
  • Mika Sulkava
    • 2
  • Harri Mäkinen
    • 3
  • Mikko Korpela
    • 2
    • 4
  • Pekka Nöjd
    • 3
  • Jaakko Hollmén
    • 2
  1. 1.Biomathematics & Statistics ScotlandThe Macaulay Land Use Research Institute, CraigiebucklerScotlandUK
  2. 2.Department of Information and Computer ScienceAalto University School of ScienceAaltoFinland
  3. 3.Southern Finland Regional UnitFinnish Forest Research InstituteVantaaFinland
  4. 4.Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations