Unsteady Numerical Study of Wet Steam Flow in a Low Pressure Steam Turbine

Abstract

In steam power plants condensation already starts in the flow path of the low pressure part of the steam turbine, which leads to a complex three-dimensional two-phase flow. Wetness losses are caused due to thermodynamic and mechanical relaxation processes during condensation and droplet transport.

The present investigation focuses on the unsteady effects due to rotor-stator interaction on the droplet formation process. Results of unsteady three dimensional flow simulations of a two-stage steam turbine are presented, whereby this is the first time that non-equilibrium condensation is considered in such simulations. The numerical approach is based on RANS equations, which are extended by a wet steam specific nucleation and droplet growth model. Despite the use of a high performance cluster the unsteady simulation has a considerably high simulation time of approximately 60 days by use of 48 CPUs.

Keywords

Steam Turbine Blade Pitch ASME Turbo Expo Monitor Point Unsteady Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, M.: Experimental assessment of droplet impact erosion of low-pressure steam turbine blades, Dissertation, Universität Stuttgart, 2009 Google Scholar
  2. 2.
    Bakhtar, F.; Heaton, A. V.: Effects of Wake Chopping on Droplet Sizes in Steam Turbines, Proc. IMechE, Part C: J. Mech. Engrg. Science, 219(12):1357–1367, 2005 CrossRefGoogle Scholar
  3. 3.
    Bakhtar, F.; Tochai, M. T. M.: An Investigation of Two-Dimensional Flows of Nucleating and Wet Steam by the Time-Marching Method, Int. J. Heat and Fluid Flow, 2(1):5–18, 1980 CrossRefGoogle Scholar
  4. 4.
    Bakhtar, F.; Young, J. B.; White, A. J.; Simpson, D. A.: Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations, Proc. IMechE, Part C: J. Mech. Engrg. Science, 219(12):1315–1333, 2005 CrossRefGoogle Scholar
  5. 5.
    Baumann, K.: Some Recent Developments in Large Steam Turbine Practice, J. Inst. Electr. Eng., 59(302):565–623, 1921 Google Scholar
  6. 6.
    Freudenreich, J.: Einfluß der Dampfnässe auf Dampfturbinen, Zeitschrift des Vereines Deutscher Ingenieure, 71(20):664–667, May 1927 Google Scholar
  7. 7.
    Gerber, A. G.: Two-Phase Eulerian/Lagrangian Model for Nucleating Steam Flow, Trans. ASME, J. Fluids Engrg., 124(2):465–475, 2002 CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gerber, A. G.; Kermani, M. J.: A Pressure Based Eulerian-Eulerian Multi-Phase Model for Non-Equilibrium Condensation in Transonic Steam Flow, Int. J. Heat and Mass Transfer, 47:2217–2231, Aug. 2004 CrossRefMATHGoogle Scholar
  9. 9.
    Gerber, A. G.; Sigg, R.; Völker, L.; Casey, M. V.; Sürken, N.: Predictions of Nonequilibrium Phase Transition in a Model Low Pressure Steam Turbine, Proc. IMechE, Part A: J. Power and Energy, 221(6):825–835, 2007 CrossRefGoogle Scholar
  10. 10.
    Gyarmathy, G.: Grundlagen einer Theorie der Naßdampfturbine, Dissertation, ETH Zürich, 1962 Google Scholar
  11. 11.
    Gyarmathy, G.; Spengler, P.: Traupel-Festschrift Gewidmet zum 60. Geburstag von Walter Traupel, chap. Über die Strömungsfluktuationen in mehrstufigen thermischen Turbomaschinen, pp. 95–141, Juris-Verlag, Zürich, 1974 Google Scholar
  12. 12.
    Heiler, M.: Instationäre Phänomene in Homogen/Heterogen Kondensierenden Düsen- und Turbinenstömungen, Ph.D. thesis, Universität Karlsruhe (TH), 1999 Google Scholar
  13. 13.
    Kirillov, I. I.; Yablonik, R. M.: Fundamentals of the Theory of Turbines operating on Wet Steam, NASA Technical Translation, NASA TT F-611, Mashinostroyeniye Press, Leningrad, 1968 Google Scholar
  14. 14.
    McCloskey, T. H.; Dooley, R. B.; McNaughton, W. P.: Turbine Steam Path Damage: Theory and Practice, Elec. Power Res. Inst., 1999 Google Scholar
  15. 15.
    McDonald, J. E.: Homogeneous Nucleation of Vapor Condensation. I. Thermodynamic Aspects, Am. J. Phys., 30:870–877, Feb. 1962 CrossRefGoogle Scholar
  16. 16.
    Moore, M. J.; Sieverding, C. H. (eds.): Two Phase Steam Flow in Turbines and Separators, von Karman Institute Book. Hemisphere Publishing Corporation, Washington, London, 1976 Google Scholar
  17. 17.
    Nitsch, J.; Wenzel, B.: Langfristszenarien und Strategien für den Ausbau Erneuerbarer Energien in Deutschland, Leitszenario 2009, Studie des DLR im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Berlin, 2009 Google Scholar
  18. 18.
    Starzmann, J.; Casey, M. V.; Sieverding, F.: Non-Equilibrium Condensation Effects on the Flow Field and the Performance of a Low Pressure Steam Turbine, in: Proceedings of ASME Turbo Expo, Glasgow, ASME, June 2010 Google Scholar
  19. 19.
    Starzmann, J.; Schatz, M.; Casey, M. V.; Mayer, J. F.; Sieverding, F.: Modelling and Validation of Wet Steam Flow in a Low Pressure Steam Turbine, in: Proceedings of ASME Turbo Expo, Vancouver, ASME, June 2011 Google Scholar
  20. 20.
    Todd, K. W.; Hall, W. B.; Morris, W. D.; Ryley, D. J.: Symposium on wet steam, in: Proc. Instn. Mech. Engrs., London, 1966 Google Scholar
  21. 21.
    VGB PowerTech: Zahlen und Fakten zur Stromerzeugung 2010, Sept. 2010, http://www.vgb.org/daten_stromerzeugung.html Google Scholar
  22. 22.
    Völker, L.: Neue Aspekte der aerodynamischen Gestaltung von Niederdruck-Endstufen-Beschaufelungen, Dissertation, Universität Stuttgart, 2006 Google Scholar
  23. 23.
    Wróblewski, W.; Dykas, S.; Gardzilewicz, A.; Kolovratnik, M.: Numerical and Experimental Investigations of Steam Condensation in LP Part of a Large Power Turbine, Trans. ASME, J. Fluids Engrg., 131(4), 2009 Google Scholar
  24. 24.
    Wróblewski, W.; Dykas, S.; Gepert, A.: Steam Condensing Flow Modeling in Turbine Channels, Int. J. Multiphase Flow, 35:498–506, March 2009 CrossRefGoogle Scholar
  25. 25.
    Young, J. B.: The Spontaneous Condensation of Steam in Supersonic Nozzles, PhysicoChemical Hydrodynamics, 3(1):57–82, 1982 Google Scholar
  26. 26.
    Young, J. B.: Two-Dimensional, Nonequilibrium, Wet-Steam Calculations for Nozzles and Turbine Cascades, Trans. ASME, J. Turbomachinery, 114:569–579, July 1992 CrossRefGoogle Scholar
  27. 27.
    Young, J. B.: The Fundamental Equations of Gas-Droplet Multiphase Flow, Int. J. Multiphase Flow, 21(2):175–191, 1995 CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ITSM – Institut of Thermal Turbomachinery and Machinery LaboratoryUniversität StuttgartStuttgartGermany

Personalised recommendations