Highly Efficient and Scalable Software for the Simulation of Turbulent Flows in Complex Geometries

  • Daniel F. Harlacher
  • Sabine Roller
  • Florian Hindenlang
  • Claus-Dieter Munz
  • Tim Kraus
  • Martin Fischer
  • Koen Geurts
  • Matthias Meinke
  • Tobias Klühspies
  • Volker Metsch
  • Katharina Benkert

Abstract

This paper investigates the efficiency of simulations for compressible turbulent flows with noise generation in complex geometries. It analyzes two different approaches and their suitability with respect to quality as well as turn around times required in industrial DoE processes. One approach makes use of a high order discontinuous Galerkin scheme. The efficiency of high order schemes on coarser meshes is compared to lower order schemes on finer meshes. The second approach is a 2nd order Finite Volume scheme, which employs a zonal coupling of LES and RANS to enhance efficiency in turbulence simulation. The schemes are applied to three industrial test cases which are described. Difficulties on HPC systems, especially load-balancing, MPI and IO, are pointed out and solutions are presented.

Keywords

Direct Numerical Simulation Discontinuous Galerkin Discontinuous Galerkin Method High Order Scheme Laminar Separation Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Utzmann, T. Schwartzkopff, C. Munz, and M. Dumbser, Heterogeneous domain decomposition for computational aero-acoustics, AIAA Journal, Vol. 44, pp. 2231–2250, (2006). CrossRefGoogle Scholar
  2. 2.
    O. Schönrock, Aeroacoustic simulation using SAS-SST turbulence model in ANSYS CFX, Proceedings of Int. Conf. on Jets, Wakes and Separated Flows, ICJWSF-2008, (2008). Google Scholar
  3. 3.
    F. Lörcher, Predictor Corrector DG, PhD thesis, University of Stuttgart, (2008). Google Scholar
  4. 4.
    F. Lörcher, G. Gassner, and C.-D. Munz, A discontinuous Galerkin scheme based on a space-time expansion I. Inviscid compressible flow in one space dimension, J. Sci. Comp., Vol. 32, pp. 175–199, (2007). CrossRefMATHGoogle Scholar
  5. 5.
    G. Gassner, F. Lörcher, and C.-D. Munz, A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions, J. Sci. Comp., Vol. 34, pp. 260–286, (2007). CrossRefGoogle Scholar
  6. 6.
    G. Gassner, F. Lörcher, and C.-D. Munz, An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, J. Comput. Phys., Vol. 227, pp. 5649–5670, (2008). CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    G. Gassner, M. Dumbser, F. Hindenlang, and C.-D. Munz, Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J. Comput. Phys., in press, corrected proof, (2010). Google Scholar
  8. 8.
    F. Hindenlang, G. Gassner, T. Bolemann, and C.-D. Munz, Unstructured high order grids and their application in discontinuous Galerkin methods, Conference Proceedings, V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal, (2010). Google Scholar
  9. 9.
    S. Hickel, Implicit Turbulence Modeling for Large-eddy Simulation, PhD thesis, TU Dresden, (2005). Google Scholar
  10. 10.
    M.E. Brachet, Direct simulation of three-dimensional turbulence in the Taylor–Green vortex, Fluid Dynamics Research, Vol. 8, pp. 1–8, (1991). CrossRefGoogle Scholar
  11. 11.
    P.-O. Persson and J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, Proc. of the 44th AIAA Aerospace Sciences Meeting and Exhibit, (2006). Google Scholar
  12. 12.
    M.-S. Liou and C.J. Steffen, A new flux splitting scheme, Journal of Computational Physics, Vol. 107, pp. 23–39, (1993). CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    M. Meinke, W. Schröder, E. Krause, and Th. Rister, A comparison of second- and sixth-order methods for large-eddy simulations, Computers and Fluids, Vol. 31, pp. 695–718, (2002). CrossRefMATHGoogle Scholar
  14. 14.
    P. Boris, F.F. Grinstein, E.S. Oran, and R.L. Kolbe, New insights into large eddy simulation, Fluid Dynamics Research, Vol. 10, pp. 199–228, (1992). CrossRefGoogle Scholar
  15. 15.
    R. Ewert and W. Schröder, Acoustic perturbation equations based on flow decomposition via source filtering, Journal of Computational Physics, Vol. 188, pp. 365–398, (2003). CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    R. Ewert and W. Schröder, On the simulation of trailing edge noise with a hybrid LES/APE method, Journal of Sound and Vibration, Vol. 270, pp. 509–524, (2004). CrossRefGoogle Scholar
  17. 17.
    D. König, S.R. Koh, M. Meinke, and W. Schröder, Two-step simulation of slat noise, Computers and Fluids, Vol. 39 nr. 3, pp. 512–524, (2010). CrossRefGoogle Scholar
  18. 18.
    A. Spille, H.-J. Kaltenbach, Generation of turbulent inflow data with a prescribed shear-stress profile, Third AFSOR Conference on DNS and LES, (2001). Google Scholar
  19. 19.
    N. Jarrin, N. Benhamadouche, S. Laurence, D. Prosser, A synthetic-eddy-method for generating inflow conditions for large-eddy simulations, Journal of Heat and Fluid Flow, Vol. 27, pp. 585–593, (2006). CrossRefGoogle Scholar
  20. 20.
    R. Wokoeck, N. Krimmelbein, J. Ortmanns, V. Ciobaca, R. Radespiel, and A. Krumbein, RANS simulation and experiments on the stall behaviour of an airfoil with laminar separation bubbles, AIAA Paper AIAA-2006-0244, (2006). Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel F. Harlacher
    • 1
  • Sabine Roller
    • 1
  • Florian Hindenlang
    • 2
  • Claus-Dieter Munz
    • 2
  • Tim Kraus
    • 3
  • Martin Fischer
    • 3
  • Koen Geurts
    • 4
  • Matthias Meinke
    • 4
  • Tobias Klühspies
    • 5
  • Volker Metsch
    • 5
  • Katharina Benkert
    • 6
  1. 1.Applied Supercomputing in Engineering, German Research School for Simulation SciencesRWTH Aachen UniversityAachenGermany
  2. 2.Institut für Aerodynamik und GasdynamikUniversität StuttgartStuttgartGermany
  3. 3.Robert Bosch GmbHStuttgartGermany
  4. 4.Chair of Fluid Mechanics and Institute of AerodynamicsRWTH Aachen UniversityAachenGermany
  5. 5.Trumpf Werkzeugmaschinen GmbH + Co. KGDitzingenGermany
  6. 6.Höchstleistungsrechenzentrum Stuttgart (HLRS)StuttgartGermany

Personalised recommendations