Discontinuous Galerkin for High Performance Computational Fluid Dynamics (hpcdg)

  • Christoph Altmann
  • Andrea Beck
  • Andreas Birkefeld
  • Florian Hindenlang
  • Marc Staudenmaier
  • Gregor Gassner
  • Claus-Dieter Munz

Abstract

In this paper we present selected ongoing computations, performed on HLRS clusters. Three efficient explicit Discontinuous Galerkin schemes, suitable for high performance calculations, are employed to perform direct numerical simulations of isotropic turbulence and turbulent channel flow, large eddy simulations of cavity-flows as well as hybrid simulations of aeroacoustic phenomena. The computations were performed on hundreds to thousands computer cores.

Keywords

Grid Cell Large Eddy Simulation Direct Numerical Simulation Isotropic Turbulence Discontinuous Galerkin Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1st Edition, Springer, Berlin, 2007. Google Scholar
  2. 2.
    F. Lörcher, Predictor Corrector DG, PhD thesis, University of Stuttgart, (2008). Google Scholar
  3. 3.
    F. Lörcher, G. Gassner and C.-D. Munz, A discontinuous Galerkin scheme based on a space-time expansion I. Inviscid Compressible flow in one space dimension, J. Sci. Comp., Vol. 32, pp. 175–199, (2007). CrossRefMATHGoogle Scholar
  4. 4.
    G. Gassner, F. Lörcher and C.-D. Munz, A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions, J. Sci. Comp., Vol. 34, pp. 260–286, (2007). CrossRefGoogle Scholar
  5. 5.
    G. J. Gassner, F. Lörcher, C.-D. Munz and J. S. Hesthaven, Polymorphic nodal elements and their application in discontinuous Galerkin methods, Journal of Computational Physics, Vol. 228, Issue 5, (20 March 2009). Google Scholar
  6. 6.
    F. Lörcher, G. Gassner and C.-D. Munz, Arbitrary High Order Accurate Time Integration Schemes for Linear Problems, European Conference on Computational Fluid Dynamics, ECCOMAS CFD, (2006). Google Scholar
  7. 7.
    G. Gassner, F. Lörcher and C.-D. Munz, An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, J. Comput. Phys., Vol. 227, pp. 5649–5670, (2008). CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    G. Gassner, M. Dumbser, F. Hindenlang and C.-D. Munz, Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J. Comput. Phys., In Press, Corrected Proof, (2010). Google Scholar
  9. 9.
    F. Hindenlang, G. Gassner, T. Bolemann and C.-D. Munz, Unstructured high order grids and their application in discontinuous Galerkin methods, Conference Proceedings, V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal, (2010). Google Scholar
  10. 10.
    S. Hickel, Implicit turbulence modeling for large-eddy simulation, PhD thesis, TU Dresden, (2005). Google Scholar
  11. 11.
    M. E. Brachet, Direct simulation of three-dimensional turbulence in the Taylor–Green vortex, Fluid Dynamics Research, Vol. 8, pp. 1–8, (1991). CrossRefGoogle Scholar
  12. 12.
    P.-O. Persson and J. Peraire, Sub-Cell Shock Capturing for Discontinuous Galerkin Methods, Proc. of the 44th AIAA Aerospace Sciences Meeting and Exhibit, (2006). Google Scholar
  13. 13.
    G. N. Coleman, J. Kim and R. D. Moser, A numerical study of turbulent supersonic isothermal-wall channel flow, J. Fluid Mech., Vol. 305, pp. 159–183, (1995). CrossRefMATHGoogle Scholar
  14. 14.
    E. Lenormand, P. Sagaut and L. Ta Phuoc, Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number, Int. J. Numer. Meth. Fluids, Vol. 32, pp. 369–406, (2000). CrossRefMATHGoogle Scholar
  15. 15.
    A. Birkefeld and C.-D. Munz, A Hybrid Method for CAA, Proc. of the 36 Jahrestagung für Akustik der Deutschen Gesellschaft für Akustik, DAGA, Berlin, (2010). Google Scholar
  16. 16.
    A. Birkefeld, A. Beck, M. Dumbser, C.-D. Munz, D. König and W. Schröder, Advances in the Computational Aeroacoustics with the Discontinuous Galerkin Solver NoisSol, Proc. of the 16th AIAA/CEAS Aeroacoustics Conference (31st AIAA Aeroacoustics Conference), Stockholm, (2010). Google Scholar
  17. 17.
    R. Ewert and W. Schröder, Acoustic perturbation equations based on flow decomposition via source filtering, Journal of Computational Physics, Vol. 188, pp. 365–398, (2003). CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    J. W. Delfs, M. Bauer, R. Ewert, H. A. Grogger, M. Lummer and T. G. W. Lauke, Numerical Simulation of Aerodynamic Noise with DLR ’s aeroacoustic code PIANO, Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Aerodynamik und Strömungstechnik. Google Scholar
  19. 19.
    R. Ewert, (Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle mesh RPM) method, Computers & Fluids, Vol. 37, pp. 369–387, (2008). CrossRefMathSciNetGoogle Scholar
  20. 20.
    S. Orszag, Numerical simulation of the Taylor-Green vortex, Computing Methods in Applied Sciences and Engineering Part 2, Lecture Notes in Computer Science, Vol. 11, pp. 50–64, (1974). Google Scholar
  21. 21.
    D. Fauconnier, Development of a Dynamic Finite Difference Method for Large-Eddy Simulation, PhD thesis, University of Gent, Belgium, (2009). Google Scholar
  22. 22.
    A. Beck, G. Gassner, I. Horenko, R. Klein and C.-D. Munz, Technischer Report im Rahmen des Schwerpunktprogramms 1276 (MetStroem), Lugano, Berlin, Stuttgart, (2011). Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christoph Altmann
    • 1
  • Andrea Beck
    • 1
  • Andreas Birkefeld
    • 1
  • Florian Hindenlang
    • 1
  • Marc Staudenmaier
    • 1
  • Gregor Gassner
    • 1
  • Claus-Dieter Munz
    • 1
  1. 1.Institut für Aerodynamik und GasdynamikUniversität StuttgartStuttgartGermany

Personalised recommendations