Analysis of the Effects of Wall Boundary Conditions and Detailed Kinetics on the Simulation of a Gas Turbine Model Combustor Under Very Lean Conditions

Abstract

The numerical study presents the simulation of the DLR gas turbine model combustor operated at very lean conditions, near the lean extinction limit. The results have been validated against numerical data: while the hybrid LES-RANS model adopted for the turbulence closure demonstrated to be very well suited for such complex simulations, the combustion revealed to be dependent on the chemical kinetic mechanism adopted for the finite rate chemistry module. The latter was used in combination with the eddy dissipation model and it was possible to show that the flame root zone is mainly controlled by chemical kinetic effects.

Keywords

Combustion Chamber Mixture Fraction ASME Turbo Expo Model Combustor Eddy Dissipation Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Candel. Combustion dynamics and control: Progress and challenges. In Proceedings of the Combustion Institute, volume 29, pages 1–28, 2002. Google Scholar
  2. 2.
    X. R. Duan, P. Weigand, W. Meier, O. Keck, W. Stricker, M. Aigner, and B. Lehmann. Experimental investigations and laser based validation measurements in a gas turbine model combustor. Progress in Computational Fluid Dynamics, 4(3–5):175–182, 2004. Text hier eingeben. CrossRefGoogle Scholar
  3. 3.
    G. Eggenspieler and S. Menon. Combustion and emission modelling near lean blow-out in a gas turbine engine. Progress in Computational Fluid Dynamics, 5(6):281–297, 2005. CrossRefMATHGoogle Scholar
  4. 4.
    J. J. Keller. Thermoacoustic oscillations in combustion chambers of gas turbines. AIAA Journal, 13(12):2280–2287, December 1995. CrossRefGoogle Scholar
  5. 5.
    A. H. Lefebvre. Gas Turbine Combustion. Taylor & Francis, 2 edition, 1999. Google Scholar
  6. 6.
    B. F. Magnussen. The eddy dissipation concept a bridge between science and technology. In ECCOMAS Thematic Conference on Computational Combustion, Lisbon (Portugal), 24 June 2005. Google Scholar
  7. 7.
    W. Meier, X. R. Duan, and P. Weigand. Investigation of swirl flames in a gas turbine model combustor. II. Turbulence-chemistry interaction. Combustion and Flame, 144:225–236, 2006. CrossRefGoogle Scholar
  8. 8.
    F. R. Menter. Two equation eddy viscosity turbulence models for engineering applications. AIAA Journal, 32(8):269–289, 1994. CrossRefGoogle Scholar
  9. 9.
    F. R. Menter and Y. Egorov. A scale-adaptive simulation model using two-equation models. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10 January 2005. Google Scholar
  10. 10.
    F. R. Menter, M. Kuntz, and R. Bender. A scale adaptive simulation model for turbulent flow prediction. AIAA Paper, (2003-0767), 2003. Google Scholar
  11. 11.
    H. C. Mongia. Ge aviation low emission combustion technology evolution. In AeroTech Congress and Exhibition, Los Angeles, CA, number 2007-01-3924 in SAE Technical Paper Series. SAE International, September 2007. Google Scholar
  12. 12.
    D. G. Nicol, P. C. Malte, A. J. Hamer, R. J Roby, and R. C. Steele. Development of a Five-Step Global Methane Oxidation-NO Formation Mechanism for Lean-Premixed Gas Turbine Combustion. Journal of Engineering for Gas Turbines and Power, 121:272–280, April 1999. CrossRefGoogle Scholar
  13. 13.
    C. O. Paschereit and E. Gutmark. Combustion instabilities and emission control by pulsating fuel injection. Journal of Turbomachinery, 130, January 2008. Google Scholar
  14. 14.
    C. O. Paschereit, E. Gutmark, and W. Weisenstein. Coherent structures in swirlling flows and their role in acoustic combustion control. Physics of Fluids, 11(9):2667–2678, September 1999. CrossRefMATHGoogle Scholar
  15. 15.
    C. O. Paschereit and E. J. Gutmark. Control of high- frequency thermoacoustic pulsations by distributed vortex generators. AIAA Journal, 44(3):550–557, March 2006. CrossRefGoogle Scholar
  16. 16.
    F. Rebosio, A. Widenhorn, B. Noll, and M. Aigner. Numerical simulation of a gas turbine model combustor operated near the lean extinction limit. In Proceedings of ASME Turbo Expo 2010, number GT2010-22751, 2010. Google Scholar
  17. 17.
    S. J. Shanbhogue, S. Husain, and T. Lieuwen. Lean blowoff of bluff body stabilized flames: Scaling and dynamics. Progress in Energy and Combustion Science, 35:98–120, 2009. CrossRefGoogle Scholar
  18. 18.
    M. Stoehr and W. Meier. Coherent structures in partially premixed swirling flames. In 12th International Symposium on Flow Visualization, 10 September 2006. Google Scholar
  19. 19.
    M. Stöhr, I. Boxx, C. Carter, and W. Meier. Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor. Proceedings of the Combustion Institute, 33(2):2953–2960, 2011. CrossRefGoogle Scholar
  20. 20.
    M. Stöhr and W. Meier. Investigation of a periodic combustion instability in a swirl burner using phase-resolved PIV. In 3rd European Combustion Meeting ECM 2007, 2007. Google Scholar
  21. 21.
    P. Weigand. Untersuchung periodischer Instabilitaeten von eingeschlossenen turbulenten Drallflammen mit Lasermessverfahren. PhD thesis, Institut fuer Verbrennungstechnik der Luft- und Raumfahrt an der Universitaet Stuttgart, Germany, 2007. Google Scholar
  22. 22.
    P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner. Investigation of swirl flames in a gas turbine model combustor. I. Flow field, structures, temperature and species distribution. Combustion and Flame, 144:205–224, 2006. CrossRefGoogle Scholar
  23. 23.
    A. Widenhorn, B. Noll, and M. Aigner. Numerical characterization of a gas turbine model combustor applying scale adaptive simulation. In Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea and Air, volume GT2009, 8 June 2009. Google Scholar
  24. 24.
    A. Widenhorn, B. Noll, and M. Aigner. Numerical study of a non-reacting turbulent flow in a gas turbine model combustor. In 47th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exhibition, number AIAA2009-647, January 2009. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Verbrennungstechnik der Luft- und RaumfahrtUniversität StuttgartStuttgartGermany

Personalised recommendations