An Architecture for the Semantic Enhancement of Clinical Decision Support Systems

  • Eider Sanchez
  • Carlos Toro
  • Eduardo Carrasco
  • Gloria Bueno
  • Carlos Parra
  • Patricia Bonachela
  • Manuel Graña
  • Frank Guijarro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6882)


Clinical Decision Support Systems (CDSS) are useful tools that aid physicians during different tasks such as diagnosis, treatment and patient monitoring. Multidisciplinary, heterogeneous and disperse clinical information and decision criteria have to be handled by CDSSs. For such tasks, Knowledge Engineering (KE) techniques and semantic technologies are very suitable, as they support (i) the integration of heterogeneous knowledge, (ii) the expression of rich and well-defined models for knowledge aggregation, and (iii) the application of logic reasoning for the generation of new knowledge.

In this paper we propose a generic architecture of a CDSS based on semantic technologies, which also considers the reutilization and enhancement of former CDSS in an organization. Particularly, an implementation of the proposed architecture is also presented, aiming to support the early diagnosis of AD.


Decision support system architecture implementation Alzheimer Disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Joseph, L., Wyatt, J.C., Altman, D.G.: Decision tools in health care: focus on the problem, not the solution. BMC Medical Informatics and Decision Making 6(4) (2006)Google Scholar
  2. 2.
    Vaquero, J., Toro, C., Palenzuela, C., Azpeitia, E.: Using Semantics to Bridge the Information and Knowledge Sharing Gaps in Virtual Engineering. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010. LNCS, vol. 6277, pp. 495–504. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Wright, A., Sittig, D.F.: A four-phase model of the evolution of clinical decision support architectures. International Journal of Medical Informatics 77(10), 641–649 (2008)CrossRefGoogle Scholar
  4. 4.
    Dumontier, M., Andersson, B., Batchelor, C., Denney, C., Domarew, C., Jentzsch, A., Luciano, J., Pichler, E., Prud’hommeaux, E., Whetzel, P., Bodenreider, O., Clark, T., Harland, L., Kashyap, V., Kos, P., Kozlovsky, J., McGurk, J., Ogbuji, C., Samwald, M., Schriml, L., Tonellato, P.J., Zhao, J., Stephens, S.: The Translational Medicine Ontology: Driving personalized medicine by bridging the gap from bedside to bench. In: Proceedings of the 13th Annual Bio-Ontologies Meeting, Bio-Ontologies, Boston, USA (2010)Google Scholar
  5. 5.
    Gnanambal, S., Thangaraj, M.: Research Directions in Semantic Web on Healthcare. Journal of Computer Science 1, 449–453 (2010)Google Scholar
  6. 6.
    Yu, W.D., Jonnalagadda, S.R.: Semantic Web and Mining in Healthcare. In: e-Health Networking, Applications and Services, pp. 198–201 (2006)Google Scholar
  7. 7.
    Zhou, Q., Wang, W.: The Automatic Inference of Arden Medical Logic Modules. In: Proceedings of the International Conference on BioMedical Engineering and Informatics (2008)Google Scholar
  8. 8.
    Peleg, M., Rubin, D.L.: Querying Radiology Appropriateness Criteria from a virtual Medical Record using GELLO. In: Proceedings of the Workshop on Knowledge Representation for Health-Care: Patient Data, Processes and Guidelines, in conjunction with Artificial Intelligence in Medicine Europe (2009)Google Scholar
  9. 9.
    Johnson, P.D., Tu, S.W., Musen, M.A., Purves, I.: A Virtual Medical Record for Guideline-Based Decision Support. Medinfo, 294–298 (2001)Google Scholar
  10. 10.
    Kawamoto, K., Lobach, D.F.: Proposal for Fulfilling Strategic Objectives of the U.S. Roadmap for National Action on Decision Support through a Service-oriented Architecture Leveraging HL7 Services. Journal of the American Medical Informatics Association 14(2), 146–155 (2007)CrossRefGoogle Scholar
  11. 11.
    Hussain, S., Raza Abidi, S., Raza Abidi, S.S.: Semantic Web Framework for Knowledge-Centric Clinical Decision Support Systems. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 451–455. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Wright, A., Sittig, D.F.: SANDS: A service-oriented architecture for clinical decision support in a National Health Information Networkstar, open. Journal of Biomedical Informatics 41(6), 962–981 (2008)CrossRefGoogle Scholar
  13. 13.
    Michalowski, W., Slowinski, R., Wilk, S., Farion, K.J., Pike, J., Rubin, S.: Design and development of a mobile system for supporting emergency triage. Methods of Information in Medicine 44(1), 14–24 (2005)Google Scholar
  14. 14.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies 43(5–6), 907–928 (1995)CrossRefGoogle Scholar
  15. 15.
    Houshiaryan, k., Kim, H.S., Kim, H.H., Tung, T., Kim, I.K., Kwak, Y.S., Cho, H.: Customized Ontology-Based Intelligent Medical Terminology Tool. In: Proceedings of 7th International Workshop on Enterprise Networking and Computing in Healthcare Industry, pp. 320–324 (2005)Google Scholar
  16. 16.
    Ghawi, R., Cullot, N.: Database-to-Ontology Mapping Generation for Semantic Interoperability. In: Third International Workshop on Database Interoperability (InterDB 2007), held in conjunction with VLDB 2007, Vienna, Austria (2007)Google Scholar
  17. 17.
    Toro, C., Sanín, C., Szczerbicki, E., Posada, J.: Reflexive Ontologies: Enhancing Ontologies with self-contained queries. Cybernetics and Systems: An International Journal 39, 171–189 (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lam, H.Y.K., Marenco, L., Clark, T., Gao, Y., Kinoshita, J., Shepherd, G., Miller, P., Wu, E., Wong, G., Liu, N., Crasto, C., Morse, T., Stephens, S., Cheung, K.H.: Semantic Web Meets e-Neuroscience: An RDF Use Case. In: Proceedings of the ASWC International Workshop on Semantic e-Science, pp. 158–170 (2006)Google Scholar
  19. 19.
    Nyström, M., Vikström, A., Nilsson, G.H., Ahlfeldt, H., Orman, H.: Enriching a primary health care version of ICD-10 using SNOMED CT mapping. Journal of Biomedical Semantics 1(7) (2010)Google Scholar
  20. 20.
    Lindgren, H.: Towards personalized decision support in the dementia domain based on clinical practice guidelines. In: User Modeling and User-Adapted Interaction, pp. 1–30 (2011)Google Scholar
  21. 21.
    Monien, B., Apostolova, L., Bitan, G.: Early diagnostics and therapeutics for Alzheimer’s disease – how early can we get there? Expert Review of Neurotherapeutics 6, 1293–1306 (2009)CrossRefGoogle Scholar
  22. 22.
    Sanín, C., Szczerbicki, E.: Experience-based knowledge representation: SOEKS. Cybernetics and Systems 40(2), 99–122 (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Eider Sanchez
    • 1
  • Carlos Toro
    • 1
  • Eduardo Carrasco
    • 1
  • Gloria Bueno
    • 2
  • Carlos Parra
    • 3
  • Patricia Bonachela
    • 3
  • Manuel Graña
    • 4
  • Frank Guijarro
    • 5
  1. 1.Vicomtech-IK4 Research CentreSan SebastianSpain
  2. 2.VISILAB group, ETSIIUniversity of Castilla-La ManchaSpain
  3. 3.University Hospital Virgen del Rocío, UCAi groupSpain
  4. 4.Computational Intelligence GroupUniversity of the Basque CountrySpain
  5. 5.BilbomaticaSpain

Personalised recommendations