Contextual Ontology Module Learning from Web Snippets and Past User Queries

  • Nesrine Ben Mustapha
  • Marie-Aude Aufaure
  • Hajer Baazaoui Zghal
  • Henda Ben Ghezala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6882)

Abstract

In this paper, we focus on modularization aspects for query reformulation in ontology-based question answering on the Web. The main objective is to automatically learn ontology modules that cover search terms of the user. Indeed, the main problem is that current approaches of ontology modularization consider only the input existant ontologies, instead of underlying semantics found in texts. This work proposes an approach of contextual ontology module learning covering particular search terms by analyzing past user queries and snippets provided by search engines. The obtained contextual modules will be used for query reformulation. The proposal has been evaluated on the ground of semantic cotopy measure of discovered ontology modules, relevance of search results.

Keywords

Ontology modular ontology knowledge ontology learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stuckenschmidt, H., Parent, C., Spaccapietra, S.: Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization. Springer, Heidelberg (2009)MATHGoogle Scholar
  2. 2.
    Turney, P.: Mining the web for synonyms: PMI-I versus LSA on TOA. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 491–502. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Noy, N., Musen, M.: Specifying Ontology Views by Traversal. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 713–725. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    D’Aquin, M., Sabou, M., Motta, E.: Modularization, a key for the Dynamic Selection of Relevant Knowledge Components. In: Proc. of the ISWC 2006 Workshop on Modular Ontologies (2006)Google Scholar
  5. 5.
    Seidenberg, J., Rector, A.: Web Ontology Segmentation: Analysis, Classification and Use. In: Proc. of the World Wide Web Conference, WWW (2006)Google Scholar
  6. 6.
    Sanchez, D., Moreno, A.: Learning non-taxonomic relationships from web documents for domain ontology construction. DKE 64(3), 600–623 (2008)CrossRefGoogle Scholar
  7. 7.
    Elloumi, M., Ben-Mustapha, N., Baazaoui, H., Moreno, A., Sanchez, D.: Evolutive Content-Based Search System. In: KDIR (2010)Google Scholar
  8. 8.
    Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems 20(4), 422–446 (2002)CrossRefGoogle Scholar
  9. 9.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graphs and graph transformation based on adhesive hlr categories. Fundam. Inf. 31, 31–61 (2006)MathSciNetGoogle Scholar
  10. 10.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Schutz, A., Buitelaar, P.: Relext: A tool for relation extraction from text in ontology extension. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 593–606. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nesrine Ben Mustapha
    • 1
    • 2
  • Marie-Aude Aufaure
    • 1
  • Hajer Baazaoui Zghal
    • 2
  • Henda Ben Ghezala
    • 2
  1. 1.Ecole Centrale Paris, MAS LaboratoryBusiness Intelligence TeamFrance
  2. 2.Laboratory RIADI, ENSILa ManoubaTunisia

Personalised recommendations