Contextual Ontology Module Learning from Web Snippets and Past User Queries

  • Nesrine Ben Mustapha
  • Marie-Aude Aufaure
  • Hajer Baazaoui Zghal
  • Henda Ben Ghezala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6882)

Abstract

In this paper, we focus on modularization aspects for query reformulation in ontology-based question answering on the Web. The main objective is to automatically learn ontology modules that cover search terms of the user. Indeed, the main problem is that current approaches of ontology modularization consider only the input existant ontologies, instead of underlying semantics found in texts. This work proposes an approach of contextual ontology module learning covering particular search terms by analyzing past user queries and snippets provided by search engines. The obtained contextual modules will be used for query reformulation. The proposal has been evaluated on the ground of semantic cotopy measure of discovered ontology modules, relevance of search results.

Keywords

Ontology modular ontology knowledge ontology learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nesrine Ben Mustapha
    • 1
    • 2
  • Marie-Aude Aufaure
    • 1
  • Hajer Baazaoui Zghal
    • 2
  • Henda Ben Ghezala
    • 2
  1. 1.Ecole Centrale Paris, MAS LaboratoryBusiness Intelligence TeamFrance
  2. 2.Laboratory RIADI, ENSILa ManoubaTunisia

Personalised recommendations