Discrete Particle Swarm Optimization for TSP: Theoretical Results and Experimental Evaluations

  • Matthias Hoffmann
  • Moritz Mühlenthaler
  • Sabine Helwig
  • Rolf Wanka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6943)

Abstract

Particle swarm optimization (PSO) is a nature-inspired technique originally designed for solving continuous optimization problems. There already exist several approaches that use PSO also as basis for solving discrete optimization problems, in particular the Traveling Salesperson Problem (TSP). In this paper, (i) we present the first theoretical analysis of a discrete PSO algorithm for TSP which also provides insight into the convergence behavior of the swarm. In particular, we prove that the popular choice of using “sequences of transpositions” as the difference between tours tends to decrease the convergence rate. (ii) In the light of this observation, we present a new notion of difference between tours based on “edge exchanges” and a new method to combine differences by computing their “centroid.” This leads to a more PSO-like behavior of the algorithm and avoids the observed slow down effect. (iii) Then, we investigate implementations of our methods and compare them with previous implementations showing the competitiveness of our new approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anghinolfi, D., Paolucci, M.: A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times. European Journal of Operational Research 193, 73–85 (2009), doi:10.1016/j.ejor.2007.10.044CrossRefMATHGoogle Scholar
  2. 2.
    Clerc, M.: Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman Problem. Website (2000), http://clerc.maurice.free.fr/pso/pso_tsp/Discrete_PSO_TSP.zip
  3. 3.
    Clerc, M.: Discrete particle swarm optimization, illustrated by the traveling salesman problem. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering. Studies in Fuzziness and Soft Computing, pp. 219–239. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Clerc, M., Kennedy, J.: The particle swarm – Explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)CrossRefGoogle Scholar
  5. 5.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. 6th International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)Google Scholar
  6. 6.
    Goldbarg, E.F.G., de Souza, G.R., Goldbarg, M.C.: Particle swarm for the traveling salesman problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 99–110. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and Its Variations. Combinatorial Optimization, vol. 12. Springer, Heidelberg (2002)MATHGoogle Scholar
  8. 8.
    Helwig, S., Wanka, R.: Theoretical analysis of initial particle swarm behavior. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 889–898. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Jiang, M., Luo, Y.P., Yang, S.Y.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102, 8–16 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica 13, 180–210 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  12. 12.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, vol. 5, pp. 4104–4108 (1997)Google Scholar
  13. 13.
    Reinelt, G.: TSPLIB – A traveling salesman problem library. ORSA Journal on Computing 3(4), 376–384 (1991)CrossRefMATHGoogle Scholar
  14. 14.
    Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, Q.X.: Particle swarm optimization-based algorithms for TSP and generalized TSP. Inf. Process. Lett. 103, 169–176 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Shi, X.H., Zhou, Y., Wang, L.M., Wang, Q.X., Liang, Y.C.: A discrete particle swarm optimization algorithm for travelling salesman problem. In: Proc. 1st Int. Conf. on Computation Methods (ICCM), vol. 2, pp. 1063–1068 (2004)Google Scholar
  16. 16.
    Solomon, A., Sutcliffe, P., Lister, R.: Sorting circular permutations by reversal. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 319–328. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Trelea, I.C.: The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 85, 317–325 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wang, K.P., Huang, L., Zhou, C.G., Pang, W.: Particle swarm optimization for traveling salesman problem. In: Proc. 2nd Int. Conf. on Machine Learning and Cybernetics, vol. 3, pp. 1583–1585 (2003)Google Scholar
  19. 19.
    Zhong, W., Zhang, J., Chen, W.: A novel discrete particle swarm optimization to solve traveling salesman problem. In: Proc. IEEE Congress on Evolutionary Computation (CEC), pp. 3283–3287 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matthias Hoffmann
    • 1
  • Moritz Mühlenthaler
    • 1
  • Sabine Helwig
    • 1
  • Rolf Wanka
    • 1
  1. 1.Department of Computer ScienceUniversity of Erlangen-NurembergGermany

Personalised recommendations