Extracting and Exploiting Topics of Interests from Social Tagging Systems

  • Felice Ferrara
  • Carlo Tasso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6943)

Abstract

Users of social tagging systems spontaneously annotate resources providing, in this way, useful information about their interests. A collaborative filtering recommender system can use this feedback in order to identify people and resources more strictly related to a specific topic of interest. Such a collaborative filtering approach can compute similarities among tags in order to select resources associated to tags relevant for a specific interest of the user. Several research works try to infer these similarities by evaluating co-occurrences of tags over the entire set of annotated resources discarding, in this way, information about the personal classification provided by users.

This paper, on the other hand, proposes an approach aimed at observing only the set of annotations of a single user in order to identify his topic of interests and to produce personalized recommendations. More specifically, following the idea that each user may have several distinct interests and people may share just some of these interests, our approach adaptively filters and combines the feedback of users according to a specific topic of interest of a user.

Keywords

Recommender systems collaborative filtering social tagging adaptive personalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems (chapter 9). In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Baltrunas, L., Ricci, F.: Locally adaptive neighborhood selection for collaborative filtering recommendations. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 22–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Marinho, L., Nanopoulos, A., Schmidt-Thieme, L., Jaschke, R., Hotho, A., Stumme, G., Symeonidis, P.: Social tagging recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, B. (eds.) Recommender Systems Handbook, pp. 615–644. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Dattolo, A., Ferrara, F., Tasso, C.: On social semantic relations for recommending tags and resources using folksonomies. In: Human-Computer Systems Interaction. Backgrounds and Applications, vol. 2 (in printing)Google Scholar
  5. 5.
    Zanardi, V., Capra, L.: Social ranking: Finding relevant content in web 2.0. In: Proc. of the 2nd ACM Int. Conf. on Recommender Systems, Lausanne, Switzerland (2008)Google Scholar
  6. 6.
    Dattolo, A., Ferrara, F., Tasso, C.: Supporting personalized user concept spaces and recommendations for a publication sharing system. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 325–330. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Zhou, T., Ma, H., Lyu, M., King, I.: Userrec: A user recommendation framework in social tagging systems. In: Proc. of the 24th AAAI Conf., Atlanta, Geogia, USA, pp. 1486–1491 (2010)Google Scholar
  8. 8.
    Benz, D., Hotho, A., Jaschke, R., Krause, B., Mitzlaff, F., Schmitz, C., Stumme, G.: The social bookmark and publication management system bibsonomy. The VLDB Journal 19, 849–875 (2010)CrossRefGoogle Scholar
  9. 9.
    Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics 11 (2009)Google Scholar
  10. 10.
    Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks 32 (2010)Google Scholar
  11. 11.
    BibSonomy: Bibsonomy dataset, dumps for research purposes, http://www.kde.cs.uni-kassel.de/bibsonomy/dumps
  12. 12.
    Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. Transaction on Information Systems 1, 143–177 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Felice Ferrara
    • 1
  • Carlo Tasso
    • 1
  1. 1.University of UdineUdineItaly

Personalised recommendations