Subsumption Architecture for Enabling Strategic Coordination of Robot Swarms in a Gaming Scenario

  • Anna Hristoskova
  • Enric Junqué de Fortuny
  • Filip De Turck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6943)


The field of swarm robotics breaks away from traditional research by maximizing the performance of a group - swarm - of limited robots instead of optimizing the intelligence of a single robot. Similar to current-generation strategy video games, the player controls groups of units - squads - instead of the individual participants. These individuals are rather unintelligent robots, capable of little more than navigating and using their weapons. However, clever control of the squads of autonomous robots by the game players can make for intense, strategic matches.

The gaming framework presented in this article provides players with strategic coordination of robot squads. The developed swarm intelligence techniques break up complex squad commands into several commands for each robot using robot formations and path finding while avoiding obstacles. These algorithms are validated through a ’Capture the Flag’ gaming scenario where a complex squad command is split up into several robot commands in a matter of milliseconds.


Swarm robotics Subsumption Robot behaviours Strategic control Robot formations Path finding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Gabel, T., Riedmiller, M.: On Progress in RoboCup: The Simulation League Showcase. In: Ruiz-del-Solar, J. (ed.) RoboCup 2010. LNCS, vol. 6556, pp. 36–47. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Mokarizadeh, S., Grosso, A., Matskin, M., Kungas, P., Haseeb, A.: Applying Semantic Web Service Composition for Action Planning in Multi-robot Systems. In: Fourth International Conference on Internet and Web Applications and Services (ICIW 2009), pp. 370–376. IEEE Press, Italy (2009)CrossRefGoogle Scholar
  4. 4.
    Schmickl, T., Thenius, R., Moeslinger, C., Radspieler, G., Kernbach, S., Szymanski, M., Crailsheim, K.: Get in touch: cooperative decision making based on robot-to-robot collisions. In: Autonomous Agents and Multi-Agent Systems, vol. 18(1), pp. 133–155. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. In: IEEE Transactions on Robotics, vol. 22(6), pp. 1115–1130. IEEE Press, Los Alamitos (2006)Google Scholar
  6. 6.
    Trianni, V., Nolfi, S., Dorigo, M.: Cooperative hole avoidance in a swarm-bot. In: Robotics and Autonomous Systems, vol. 54(2), pp. 97–103. Elsevier, Amsterdam (2006)Google Scholar
  7. 7.
    Nouyan, S., Dorigo, M.: Chain based path formation in swarms of robots. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 120–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Groß, R., Dorigo, M.: Towards group transport by swarms of robots. International Journal of Bio-Inspired Computation 1(1-2), 1–13 (2009)CrossRefGoogle Scholar
  9. 9.
    Ducatelle, F., Di Caro, G.A., Gambardella, L.M.: Cooperative self-organization in a heterogeneous swarm robotic system. In: 12th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO), pp. 87–94 (2010)Google Scholar
  10. 10.
    Coltin, B., Liemhetcharat, S., Meriçli, C., Tay, J., Veloso, M.: Multi-Humanoid World Modeling in Standard Platform Robot Soccer. In: 10th IEEE-RAS International Conference on Humanoid Robots, USA (2010)Google Scholar
  11. 11.
    Browning, B., Bruce, J., Bowling, M., Veloso, M.: STP: Skills, tactics, and plays for multi-robot control in adversarial environments. IEEE Journal of Control and Systems Engineering 219, 33–52 (2005)Google Scholar
  12. 12.
    Dias, M., Kannan, B., Browning, B., Jones, E., Argall, B., Dias, M., Zinck, M., Veloso, M., Stentz, A.: Sliding autonomy for peer-to-peer human-robot teams. In: 10th Intelligent Conference on Intelligent Autonomous Systems (IAS 2008), Germany, pp. 332–341 (2008)Google Scholar
  13. 13.
    Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. In: Swarm Intelligence, vol. 2(2), pp. 97–120. Springer, Heidelberg (2008)Google Scholar
  14. 14.
  15. 15.
  16. 16.
    Rampinelli, V.T.L., Brandao, A.S., Martins, F.N., Sarcinelli-Filho, M., Carelli, R.: A multi-layer control scheme for multi-robot formations with obstacle avoidance. In: International Conference on Advanced Robotics (ICAR 2009), pp. 1–6. IEEE Press, Germany (2009)Google Scholar
  17. 17.
    Gamage, G.W., Mann, G., Gosine, R.G.: Formation control of multiple nonholonomic mobile robots via dynamic feedback linearization. In: International Conference on Advanced Robotics (ICAR 2009), pp. 1–6. IEEE Press, Germany (2009)Google Scholar
  18. 18.
    Lego Mindstorms NXT,

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anna Hristoskova
    • 1
  • Enric Junqué de Fortuny
    • 1
  • Filip De Turck
    • 1
  1. 1.Department of Information TechnologyGhent University - IBBTGhentBelgium

Personalised recommendations