Numerical Algorithms for ESM: State of the Art

Chapter
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST, volume 1)

Abstract

Numerical simulation of geophysical flows has been historically one of the earliest instances in which the power of electronic computers was employed successfully to the quantitative prediction of natural phenomena. Initially, the main focus was indeed on numerical weather forecasting, for which the ideas of Richardson had already provided an appropriate conceptual framework, that was subsequently strengthened by the analyses and the numerical simulations of Charney and von Neumann.

Keywords

Ocean Model Finite Volume Method Numerical Weather Prediction Spectral Coefficient Spherical Harmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramowitz M, Stegun I (1965) Handbook of mathematical functions. Dover Publications, New YorkGoogle Scholar
  2. Arakawa A (1966) Computational design for longterm numerical integration of the equations of fluid motion: two-dimensional incompressible flow. J Comput Phys 1:119–143CrossRefGoogle Scholar
  3. Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Clim 17:2493–2525CrossRefGoogle Scholar
  4. Arakawa A, Lamb V (1981) A potential enstrophy and energy conserving scheme for the shallow water equations. Mon Weather Rev 109:18–136CrossRefGoogle Scholar
  5. Asselin R (1972) Frequency filter for time integrations. Mon Weather Rev 100:487–490CrossRefGoogle Scholar
  6. Beljaars A, Bechtold P, Köhler M, Morcrette J, Tompkins A, Viterbo P, Wedi N (2004) The numerics of physical parameterization. In: Proceedings of the Seminar on recent developments in numerical methods for atmosphere and ocean models, ECMWF, pp 113–134Google Scholar
  7. Bourke W (1972) An efficient one level primitive-equation spectral model. Mon Weather Rev 100:683–689CrossRefGoogle Scholar
  8. Bourke W (1974) A multi-level spectral model. I: formulation and hemispheric integrations. Mon Weather Rev 10:687–701CrossRefGoogle Scholar
  9. Bryan K, Manabe S, Pacanowski RC (1975) A global ocean-atmosphere climate model II: the oceanic circulation. J Phys Oceanogr 5:30–29CrossRefGoogle Scholar
  10. Caya A, Laprise R, Zwack P (1998) Consequences of using the splitting method for implementing physical forcings in a semi-implicit, semi-Lagrangian model. Mon Weather Rev 126:1707–1713CrossRefGoogle Scholar
  11. Collins W, Rasch P, Boville B, Hack J, McCaa J, Williamson D, Briegleb B, Bitz C, Lin S, Zhang Z (2006) The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J Clim 19:2144–2161CrossRefGoogle Scholar
  12. Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Commun Pure Appl Math 5:243–255CrossRefGoogle Scholar
  13. Davies T, Cullen M, Malcolm A, Mawson M, Staniforth A, White A, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart J Royal Meteorol Soc 131:1759–1782CrossRefGoogle Scholar
  14. Dubal M, Wood N, Staniforth A (2005) Mixed parallel-sequential-split schemes for time-stepping multiple physical parameterizations. Mon Weather Rev 133:989–1002CrossRefGoogle Scholar
  15. Dubal M, Wood N, Staniforth A (2006) Some numerical properties of approaches to physics-dynamics coupling for NWP. Quart J Royal Meteorol Soc 132:27–42CrossRefGoogle Scholar
  16. Dukowicz J (1995) Mesh effects for Rossby waves. J Comput Phys 119:188–194CrossRefGoogle Scholar
  17. Durran D (1991) The third order Adams–Bashforth method: an attractive alternative to leapfrog time differencing. Mon Weather Rev 119:702–720CrossRefGoogle Scholar
  18. Fletcher C (1997) Computational techniques for fluid dynamics. Springer, BerlinGoogle Scholar
  19. Garrat J (1993) Sensitivity of climate simulations to land surface and atmospheric boundary layer treatments: a review. J Clim 6:419–449CrossRefGoogle Scholar
  20. Gent P, McWilliams J (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 29:2719–2729Google Scholar
  21. Girard C, Delage Y (1990) Stable schemes for nonlinear vertical diffusion in atmospheric circulation models. Mon Weather Rev 118:737–745CrossRefGoogle Scholar
  22. Griffies SE (2004) Fundamentals of Ocean Climate Models. Princeton University Press, PrincetonGoogle Scholar
  23. Griffies SM, Böning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier AM, Webb D (2000) Developments in ocean climate modelling. Ocean Dyn 2:123–192Google Scholar
  24. Haidvogel DB, Beckmann A (1999) Numerical ocean circulation modeling. Imperial College Press, LondonCrossRefGoogle Scholar
  25. Haidvogel D, Shchepetkin A, Arango H (2004) The regional ocean modeling system: new time-stepping algorithms to reduce mode-splitting error and to ensure constancy preservation. In: Proceedings of the seminar on recent developments in numerical methods for atmosphere and ocean models, ECMWF, pp 151–162Google Scholar
  26. Haltiner G, Williams R (1980) Numerical weather prediction and dynamic meteorology. Wiley, New YorkGoogle Scholar
  27. Hirsch C (1990) Numerical Computation of Internal and External Flows: Computational Methods for Inviscid and Viscous Flows, vol. 2. 1st edn. Wiley, ChichesterGoogle Scholar
  28. Hortal M, Simmons A (1991) Use of reduced Gaussian grids in spectral models. Mon Weather Rev 119:1057–1074CrossRefGoogle Scholar
  29. Hoskins BJ, Simmons AJ (1975) A multi-layer spectral model and the semi-implicit method. Quart J Royal Meteorol Soc 101:637–655CrossRefGoogle Scholar
  30. Janjic Z (1984) Nonlinear advection schemes and energy cascade on semi-staggered grids. Mon Weather Rev 111:1234–1245CrossRefGoogle Scholar
  31. Kalnay E, Kanamitsu M (1988) Time schemes for strongly nonlinear damping equations. Mon Weather Rev 116:1945–1958CrossRefGoogle Scholar
  32. Kantha LH, Clayson CA (2000) Numerical models of oceans and oceanic processes, vol 66. International Geophysics Series, Academic Press, San DiegoGoogle Scholar
  33. Kasahara A (1974) Various vertical coordinate systems used for numerical weather prediction. Mon Weather Rev 102:509–522CrossRefGoogle Scholar
  34. Kasahara A, Washington WW (1967) NCAR global general circulation model of the atmosphere. Mon Weather Rev 95:389–402CrossRefGoogle Scholar
  35. Klemp J, Wilhelmson R (1978) The simulation of three-dimensional convective storm dynamics. J Atmos Sci 35:1070–1096CrossRefGoogle Scholar
  36. Large W, McWilliams J, Doney S (1994) Oceanic vertical mixing: a review and a model with nonlocal boundary layer parameterization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  37. Leonard B, Lock A, MacVean M (1996) Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Mon Weather Rev 124:2588–2606CrossRefGoogle Scholar
  38. LeVeque R (2007) Finite difference methods for ordinary and partial differential equations, Steady state and time dependent problems, SIAM, PhiladelphiaGoogle Scholar
  39. Lin S (2004) Vertically Lagrangian finite-volume dynamical core for global models. Mon Weather Rev 132:2293–2307CrossRefGoogle Scholar
  40. Lin S, Rood R (1996) Multidimensional flux-form semi-Lagrangian transport schemes. Mon Weather Rev 124:2046–2070CrossRefGoogle Scholar
  41. Lin S, Rood RB (1997) An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart J Royal Meteorol Soc 123:2477–2498CrossRefGoogle Scholar
  42. Manabe S, Bryan K (1969) Climate calculations with a combined ocean-atmosphere model. J Atmos Sci 26:786–789Google Scholar
  43. Manabe S, Bryan K, Spelman M (1975) A global ocean-atmosphere climate model Part I: the atmospheric circulation. J Phys Oceanogr 5:3–29Google Scholar
  44. Marshall S (2005) Recent advances in understanding ice sheet dynamics. Earth Planet Sci Lett 240:191–204CrossRefGoogle Scholar
  45. Mesinger F (1981) Horizontal advection schemes on a staggered grid: an enstrophy and energy conserving model. Mon Weather Rev 109:467–478CrossRefGoogle Scholar
  46. Mesinger F, Arakawa A (1976) Numerical methods used in atmospheric models, vol 1, WMO, GARP Publication series n.17Google Scholar
  47. Morcrette J (1991) Radiation and cloud radiative properties in the ECMWF forecasting system. J Geophys Res Atmos 96:9121–9132CrossRefGoogle Scholar
  48. Orszag SA (1970) Transform method for calculation of vector coupled sums:application to the spectral form of the vorticity equation. J Atmos Sci 27:890–895CrossRefGoogle Scholar
  49. Phillips T, Potter G, Williamson D, Cederwall R, JSBoyle, Fiorino M, Hnilo J, Olson J, Xie S, Yio J (2004) Evaluating parameterizations in general circulation models—Climate simulation meets weather prediction. Bull Am Meteorol Soc 85:1903–1947Google Scholar
  50. Randall D (1994) Geostrophic adjustment and the finite-difference shallow water equations. Mon Weather Rev 122:1371–1377CrossRefGoogle Scholar
  51. Robert A (1981) A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean 19:35–46CrossRefGoogle Scholar
  52. Robert A (1982) A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J Meteorol Soc Japan 60:319–325Google Scholar
  53. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: model description. MPI Technical Report 349, MPIMGoogle Scholar
  54. Sadourny R (1975) The dynamics of finite difference models of the shallow water equations. J Atmos Sci 32:680–689Google Scholar
  55. Sadourny R, Arakawa A, Mintz Y (1968) Integration of the nondivergent barotropic vorticity equation with a icosahedral-hexagonal grid for the sphere. Mon Weather Rev 96:351–356CrossRefGoogle Scholar
  56. Simmons AJ, Burridge DM (1981) An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon Weather Rev 109:758–766CrossRefGoogle Scholar
  57. Smagorinsky J (1963) General circulation experiments with the primitive equations: part I, the basic experiment. Mon Weather Rev 91:99–162CrossRefGoogle Scholar
  58. Staniforth A, Coté J (1991) Semi-Lagrangian integration schemes for atmospheric models—a review. Mon Weather Rev 119:2206–2223CrossRefGoogle Scholar
  59. Staniforth A, Wood N (2008) Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. J Comput Phys 227:3445–3464CrossRefGoogle Scholar
  60. Strikwerda J (1989) Finite difference schemes and PDEs. Wadsworth-Brooks/Cole, Pacific GroveGoogle Scholar
  61. Teixeira J (1999) Stable schemes for partial differential equations: the one-dimensional diffusion equation. J Comput Phys 153:403–417CrossRefGoogle Scholar
  62. Warner J, Sherwood C, Arango H, Signell R (2005) Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell 8:81–113CrossRefGoogle Scholar
  63. Wild M (2008) Short-wave and long-wave surface radiation budgets in GCMs: a review based on the IPCC-AR4/CMIP3 models. Tellus Series A 60:932–9453CrossRefGoogle Scholar
  64. Williamson D (1968) Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus 20:642–653CrossRefGoogle Scholar
  65. Williamson D (1979) Numerical methods used in atmospheric models, vol. II,WMO, GARP Publication series n.17Google Scholar
  66. Williamson D (2002) Time-split versus process-split coupling of parameterizations and dynamical core. Mon Weather Rev 130:2024–2041CrossRefGoogle Scholar
  67. Williamson D (2007) The evolution of dynamical cores for global atmospheric models. J Meteorol Soc Jpn 85:241–269CrossRefGoogle Scholar
  68. Williamson D, Rasch P (1989) Two dimensional semi-Lagrangian transport with shape preserving interpolation. Mon Weather Rev 117:102–129CrossRefGoogle Scholar
  69. Williamson D, Rosinski J (2000) Accuracy of reduced grid calculations. Quart J Royal Meteorol Soc 126:1619–1640CrossRefGoogle Scholar
  70. Wood N, Diamantakis M, Staniforth A (2007) A monotonically-damping second-order-accurate unconditionally-stable numerical scheme for diffusion. Quart J Royal Meteorol Soc 133:1559–1573CrossRefGoogle Scholar
  71. Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the canadian climate centre general circulation model. Atmos Ocean 33:407–446CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.MOX-Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly
  2. 2.Institut für MeereskundeUniversität HamburgHamburgGermany

Personalised recommendations