Advertisement

Traffic Jams Detection Using Flock Mining

  • Rebecca Ong
  • Fabio Pinelli
  • Roberto Trasarti
  • Mirco Nanni
  • Chiara Renso
  • Salvatore Rinzivillo
  • Fosca Giannotti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6913)

Introduction

The widespread use of GPS devices on cars enables the collection of time-dependent positions of vehicles and, hence, of their movements on the road network. It is possible to analyze such huge collection of data to look for critical situation on the traffic flow. The offline analysis of traffic congestions represents a challenging task for urban mobility managers. This kind of analysis can be used by the traffic planner to predict future areas of traffic congestions, or to improve the accessibility to specific attraction points in a city.Many traffic systems adopt ad-hoc sensors like cameras, induction loops, magnetic sensors to monitor the status of the traffic flows: these systems are very expensive for installation and maintenance, and they are restricted to the local monitoring of the road arcs where they are installed. On the contrary, the use of GPS data to check the traffic conditions requires low installation costs (a part for the installation on the vehicle) and it enables to virtually monitoring the entire road network.

Keywords

Road Network Induction Loop Speed Constraint Entire Road Network ECML PKDD 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gudmundsson, J., van Kreveld, M.J.: Computing longest duration flocks in trajectory data. In: GIS (2006)Google Scholar
  2. 2.
    Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science 19(6), 639–668 (2005)CrossRefGoogle Scholar
  3. 3.
    Gennadu, A., Natalia, A.: A general framework for using aggregation in visual exploration of movement data. The Cartographic Journal 47(1), 22–40 (2010)CrossRefGoogle Scholar
  4. 4.
    Trasarti, R., Rinzivillo, S., Pinelli, F., Nanni, M., Monreale, A., Renso, C., Pedreschi, D., Giannotti, F.: Exploring Real Mobility Data with M-Atlas. ECML/PKDD (3), 624–627 (2010)Google Scholar
  5. 5.
    Wachowicz, M., Ong, R., Renso, C., Nanni, M.: Discovering Moving Flock Patterns among Pedestrians through Spatio-Temporal Coherence. International Journal of Geographical Information Science (in press)Google Scholar
  6. 6.
    Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting Flock Patterns. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 660–671. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Trasarti, R., Giannotti, F., Nanni, M., Pedreschi, D., Renso, C.: A query language for mobility data mining. International Journal of Data Warehousing and Mining (IJDWM) 7(1), 24–45 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rebecca Ong
    • 1
  • Fabio Pinelli
    • 1
  • Roberto Trasarti
    • 1
  • Mirco Nanni
    • 1
  • Chiara Renso
    • 1
  • Salvatore Rinzivillo
    • 1
  • Fosca Giannotti
    • 1
  1. 1.Pisa KDD LaboratoryISTI - CNRItaly

Personalised recommendations