Degradation of Chloro-organic Pollutants by White Rot Fungi

Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

White rot fungi are attractive as candidates for designing effective bioremediation strategies because of the broad substrate specificity of the ligninolytic enzymes which enable these fungi to degrade or mineralize quite a broad spectrum of chloro?organic and other environmental pollutants. A majority of the bioremediation studies to date were done with P. chrysosporium as the model but a number of other white rot fungi have also been studied in recent years. Basic studies designed to obtain a better understanding of the mechanisms of actions as well as the basic gene structures and proteins of the major extracellular ligninolytic enzymes (LiP, MnP, VP, and laccase) that catalyze degradation of chloro?organics through free?radical?mediated reactions have been described. Recent studies indicate that intracellular enzymes as exemplified by cytochrome P450 monooxygenases are also important in the degradation of a number of the chloroorganic pollutants.

Keywords

Veratryl Alcohol Clofibric Acid Triazine Herbicide Versatile Peroxidase Veratryl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to acknowledge past students, postdoctoral fellows, and visiting scientists in their labs who contributed to the research results presented in this chapter. C. A. Reddy is also grateful for the funding received from Department of Energy over the years that contributed in part to the research presented here.

References

  1. Aranda E, Marco-Urrea E, Caminal G, Arias ME, Garcia-Romera I, Guillen F (2010) Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor. J Hazard Mater 181:181–186Google Scholar
  2. Aust SD (1990) Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb Ecol 20:197–209Google Scholar
  3. Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12Google Scholar
  4. Barr DP, Shah MM, Grover TA, Aust SD (1992) Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 298:480–485Google Scholar
  5. Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeter Biodegrad 63:389–394Google Scholar
  6. Beaudette LA, Davies S, Fedorak PM, Ward OP, Pickard MA (1998) Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Environ Microbiol 64:2020–2025Google Scholar
  7. Beaudette LA, Ward OP, Pickard MA, Fedorak PM (2000) Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Lett Appl Microbiol 30:155–160Google Scholar
  8. Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63Google Scholar
  9. Bumpus JA, Aust SD (1987) Biodegradation of DDT [1, 1, 1-trichloro-2, 2-bis(4-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008Google Scholar
  10. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436Google Scholar
  11. Buswell JA, Odier E (1987) Lignin biodegradation. CRC Crit Rev Microbiol 15:141–168Google Scholar
  12. Cabana H, Jiwan JL, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP (2007) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67:770–778Google Scholar
  13. Cabana H, Alexandre C, Agathos SN, Jones JP (2009a) Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Biores Technol 100:3447–3458Google Scholar
  14. Cabana H, Jones JP, Agathos SN (2009b) Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine-disrupting chemicals. Biotechnol Bioeng 102:1582–1592Google Scholar
  15. Cabana H, Ahamed A, Leduc R (2010) Conjugation of laccase from the white rot fungus Trametes versicolor to chitosan and its utilization for the elimination of triclosan. Biores Technol. doi: 10.1016/j.biotech.2010.09.080
  16. Cajthaml T, Kresinova Z, Svobodova K, Moder M (2009) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75:745–750Google Scholar
  17. Cameron MD, Aust SD (1999) Degradation of chemicals by reactive radicals produced by cellobiose dehydrogenase from Phanerochaete chrysosporium. Arch Biochem Biophys 367:115–121Google Scholar
  18. Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705Google Scholar
  19. Chang YS (2008) Recent developments in microbial biotransformation and biodegradation of dioxins. J Mol Microbiol Biotechnol 15:152–171Google Scholar
  20. De S, Perkins M, Dutta SK (2006) Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium. J Hazard Mater 135:350–354Google Scholar
  21. Dietrich D, Hickey WJ, Lamar R (1995) Degradation of 4,4?-dichlorobiphenyl, 3,3?,4,4?-tetrachlorobiphenyl, and 2,2?,4,4?,5,5?-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61:3904–3909Google Scholar
  22. Doddapaneni H, Yadav JS (2004) Differential regulation and xenobiotic induction of tandem P450 monooxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 65:559–565Google Scholar
  23. Donnelly PK, Entry JA, Crawford DL (1993) Degradation of atrazine and 2, 4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl Environ Microbiol 59:2642–2647Google Scholar
  24. Dosoretz CG, Reddy CA (2007) Lignin and lignin-modifying enzymes. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LJ (eds) Methods for general and molecular microbiology, 3rd edn. American Society for Microbiology, Washington, pp 611–620Google Scholar
  25. Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microb Technol 7:194–196Google Scholar
  26. Entry JA, Donnelly PK, Emmingham WH (1996) Mineralization of atrazine and 2, 4-D in soils inoculated with Phanerochaete chrysosporium and Trappea darkeri. Appl Soil Ecol 3:85–90Google Scholar
  27. Fernando T, Aust SD, Bumpus JA (1987) Effects of culture parameters on DDT [1, 1, 1-trichloro-2, 2-bis(4-chlorophenyl)ethane] biodegradation by Phanerochaete chrysosporium. Chemosphere 19:1387–1398Google Scholar
  28. Fragoeiro S, Magan N (2005) Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ Microb 7:348–355Google Scholar
  29. Fragoeiro S, Magan N (2008) Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. Int Biodeter Biodegrad 62:376–383Google Scholar
  30. Fujihiro S, Higuchi R, Hisamatsu S, Sonoki S (2009) Metabolism of hydroxylated PCB congeners by cloned laccase isoforms. Appl Microbiol Biotechnol 82:853–860Google Scholar
  31. Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Micorbiol Rev 57:605–622Google Scholar
  32. Gold MH, Youngs HL, Sollewijin Gelpke MD (2000) Manganese peroxidase. In: Sigel A, Sigel H (eds) Manganese and its role in biological processes. Marcel Dekker, New York, pp 559–580Google Scholar
  33. Gomez-Toribio V, Garcia-Martin AB, Martinez MJ, Martinez AT, Guillen F (2009a) Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal. Appl Environ Microbiol 75:3954–3962Google Scholar
  34. Gomez-Toribio V, Garcia-Martin AB, Martinez MJ, Martinez AT, Guillen F (2009b) Induction of extracellular hydroxyl radical production by white rot fungi through quinone redox cycling. Appl Environ Microbiol 75:3944–3953Google Scholar
  35. Guillen F, Martinez MJ, Munoz C, Martinez AT (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys 339:190–199Google Scholar
  36. Hakala TK, Hildén K, Maijala P, Olsson C, Hatakka A (2006) Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 73:839–849Google Scholar
  37. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium. J Biol Chem 261:16948–16952Google Scholar
  38. Harper DB, Buswell JA, Kennedy JT, Hamilton JT (1990) Chloromethane, methyl donor in veratryl alcohol biosynthesis in Phanerochaete chrysosporium and other lignin-degrading fungi. Appl Environ Microbiol 56:3450–3457Google Scholar
  39. Hickey WJ, Fuster DJ, Lamar RT (1994) Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biol Biochem 26:1665–1671Google Scholar
  40. Hildén K, Hakala TK, Maijala P, Lundell TK, Hatakka A (2007) Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 77:301–309Google Scholar
  41. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897Google Scholar
  42. Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F (2000) Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl Environ Microbiol 66:4157–4160Google Scholar
  43. Inoue Y, Hata T, Kawai S, Okamura H, Nishida T (2010) Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus. J Hazard Mater 180:764–767Google Scholar
  44. Kamei I, Kondo R (2005) Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-dioxin by the white rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 68:560–566Google Scholar
  45. Kamei I, Suhara H, Kondo R (2005) Phylogenetical approach to isolation of white rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol Biotechnol 69:358–366Google Scholar
  46. Kamei I, Kogura R, Kondo R (2006a) Metabolism of 4,4?-dichlorobiphenyl by white rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl Microbiol Biotechnol 72:566–575Google Scholar
  47. Kamei I, Sonoki S, Haraguchi K, Kondo R (2006b) Fungal bioconversion of toxic polychlorinated biphenyls by white rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol 73:932–940Google Scholar
  48. Kamei I, Watanabe M, Harada K, Miyahara T, Suzuki S, Matsufuji Y, Kondo R (2009) Influence of soil properties on the biodegradation of 1, 3, 6, 8-tetrachlorodibenzo-p-dioxin and fungal treatment of contaminated paddy soil by white rot fungus Phlebia brevispora. Chemosphere 75:1294–1300Google Scholar
  49. Kamei I, Takagi K, Kondo R (2010) Bioconversion of dieldrin by wood-rotting fungi and metabolite detection. Pest Manag Sci 66:888–891Google Scholar
  50. Kasai N, Ikushiro S, Shinkyo R, Yasuda K, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Sakaki T (2010) Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol 86:773–780Google Scholar
  51. Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767). Appl Environ Microbiol 56:2347–2353Google Scholar
  52. Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480Google Scholar
  53. Keum YS, Li QX (2004) Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls. Chemosphere 56:23–30Google Scholar
  54. Khindaria A, Grover TA, Aust SD (1995) Reductive dehalogenation of aliphatic halocarbons by lignin peroxidase of Phanerochaete chrysosporium. Environ Sci Technol 29:719–725Google Scholar
  55. Kim YJ, Nicell JA (2006) Laccase-catalysed oxidation of aqueous triclosan. J Chem Technol Biotechnol 81:1344–1352Google Scholar
  56. Köhler A, Jäager A, Willershausen H, Graf H (1988) Extracellular ligninase of Phanerochaete chrysosporium has no role in the degradation of DDT. Appl Microbiol Biotechnol 29:618–620Google Scholar
  57. Koller G, Moder M, Czihal K (2000) Peroxidative degradation of selected PCB: a mechanistic study. Chemosphere 41:1827–1834Google Scholar
  58. Kordon K, Mikolasch A, Schauer F (2010) Oxidative dehalogenation of chlorinated hydroxybiphenyls by laccases of white rot fungi. Int Biodeter Biodegrad 64:203–209Google Scholar
  59. Kremer SM, Wood PM (1992) Cellobiose oxidase from Phanerochaete chrysosporium as a source of Fenton’s reagent. Biochem Soc Trans 20:110SGoogle Scholar
  60. Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Sasek V (2001) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 43:207–215Google Scholar
  61. Lawton LA, Robertson PKJ (1999) Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chem Soc Rev 28:217–224Google Scholar
  62. Lundell TK, Makela MR, Hilden K (2010) Lignin-modifying enzymes in filamentous basidiomycetes–ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20Google Scholar
  63. Majeau JA, Brar SK, Tyagi RD (2010) Laccase for removal opf recalcitrant and emerging pollutants. Biores Technol 101:2331–2350Google Scholar
  64. Manji S, Ishihara A (2004) Screening of tetrachlorodibenzo-p-dioxin-degrading fungi capable of producing extracellular peroxidases under various conditions. Appl Microbiol Biotechnol 63:438–444Google Scholar
  65. Marco-Urrea E, Gabarrell X, Sarra M, Caminal G, Vicent T, Reddy CA (2006) Novel aerobic perchloroethylene degradation by the white rot fungus Trametes versicolor. Environ Sci Technol 40:7796–7802Google Scholar
  66. Marco-Urrea E, Gabarrell X, Caminal G, Vicent T, Reddy CA (2008a) Aerobic degradation by white rot fungi of trichloroethylene (TCE) and mixtures of TCE and perchloroethylene (PCE). J Chem Technol Biotechnol 83:1190–1196Google Scholar
  67. Marco-Urrea E, Parella T, Gabarrell X, Caminal G, Vicent T, Adinarayana Reddy C (2008b) Mechanistics of trichloroethylene mineralization by the white rot fungus Trametes versicolor. Chemosphere 70:404–410Google Scholar
  68. Marco-Urrea E, Aranda E, Caminal G, Guillen F (2009a) Induction of hydroxyl radical production in Trametes versicolor to degrade recalcitrant chlorinated hydrocarbons. Biores Technol 100:5757–5762Google Scholar
  69. Marco-Urrea E, Perez-Trujillo M, Caminal G, Vicent T (2009b) Dechlorination of 1, 2, 3- and 1, 2, 4-trichlorobenzene by the white rot fungus Trametes versicolor. J Hazard Mater 166:1141–1147Google Scholar
  70. Marco-Urrea E, Perez-Trujillo M, Vicent T, Caminal G (2009c) Ability of white rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772Google Scholar
  71. Marco-Urrea E, Radjenovic J, Caminal G, Petrovic M, Vicent T, Barcelo D (2010) Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white rot fungus Trametes versicolor. Water Res 44:521–532Google Scholar
  72. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700Google Scholar
  73. Masaphy S, Levanon D, Vaya J, Henis Y (1993) Isolation and characterization of a novel atrazine metabolite produced by the fungus Pleurotus pulmonarius, 2-chloro-4-ethylamino-6-(1-Hydroxyisopropyl)amino-1, 3, 5-triazine. Appl Environ Microbiol 59:4342–4346Google Scholar
  74. Masaphy S, Henis Y, Levanon D (1996a) Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Appl Environ Microbiol 62:3587–3593Google Scholar
  75. Masaphy S, Levanon D, Henis Y (1996b) Degradation of atrazine by the lignocellulolytic fungus Pleurotus pulmonarius during solid-state fermentation. Biores Technol 56:207–214Google Scholar
  76. Mason MG, Nicholls P, Wilson MT (2003) Rotting by radicals–the role of cellobiose oxidoreductase? Biochem Soc Trans 31:1335–1336Google Scholar
  77. Matheus DR, RV L, Machado KMG (2000) Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues. World J Microbiol Biotechnol 16:415–421Google Scholar
  78. Moreira PR, Duez C, Dehareng D, Antunes A, Almeida-Vara E, Frère JM, Malcata FX, Duarte JC (2005) Molecular characterization of a versatile peroxidase from a Bjerkandera strain. J Biotechnol 118:339–352Google Scholar
  79. Morel M, Ngadin AA, Droux M, Jacquot JP, Gelhaye E (2009) The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium. Cell Mol Life Sci 66:3711–3725Google Scholar
  80. Mori T, Kondo R (2002a) Degradation of 2, 7-dichlorodibenzo-p-dioxin by wood-rotting fungi, screened by dioxin degrading ability. FEMS Microbiol Lett 213:127–131Google Scholar
  81. Mori T, Kondo R (2002b) Oxidation of dibenzo-p-dioxin, dibenzofuran, biphenyl, and diphenyl ether by the white rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 60:200–205Google Scholar
  82. Mougin C, Laugero C, Asther M, Dubroca J, Frasse P (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708Google Scholar
  83. Mougin C, Pericaud C, Malosse C, Laugero C, Asther C (1996) Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pest Sci 47:51–59Google Scholar
  84. Mougin C, Pericaud C, Dubroca J, Asther C (1997a) Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium. Soil Biol Biochem 29:1321–1324Google Scholar
  85. Mougin C, Pericaud C, Dubroca J, Asther M (1997b) Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium. Soil Biol Biochem 29:9–10Google Scholar
  86. Murugesan K, Chang YY, Kim YM, Jeon JR, Kim EJ, Chang YS (2010) Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res 44:298–308Google Scholar
  87. Nwachukwu EO, Osuji JO (2007) Bioremedial degradation of some herbicides by indigenous white rot fungus, Lentinus subnudus. J Plant Sci 2:619–624Google Scholar
  88. Pinedo-Rilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214Google Scholar
  89. Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57:20–33Google Scholar
  90. Popp JL, Kirk TK (1991) Oxidation of methoxybenzenes by manganese peroxidase and by Mn3+. Arch Biochem Biophys 288:145–148Google Scholar
  91. Purnomo AS, Kamei I, Kondo R (2008) Degradation of 1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105:614–621Google Scholar
  92. Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeter Biodegrad 64:397–402Google Scholar
  93. Quintero JC, Moreira MT, Feijoo G, Lema JM (2008) Screening of white rot fungal species for their capacity to degrade lindane and other isomers of hexachlorocyclohexane (HCH). Cienc Inv Agr 35:123–132Google Scholar
  94. Raghukumar C (2000) Fungi from marine habitats: an application in bioremediation. Mycol Res 104:1222–1226Google Scholar
  95. Reddy CA (1995) The potential for white rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328Google Scholar
  96. Reddy CA, D’Souza TM (1994) Physiology and Molecularbiology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 13:137–152Google Scholar
  97. Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, London, pp 52–78Google Scholar
  98. Reddy GVB, Joshi DK, Aust SD (1997) Degradation of chlorophenoxyacetic acids by the lignin-degrading fungus Dichomitus squalens. Microbiol 143:2353–2360Google Scholar
  99. Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ (2010) Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol 28:63–72Google Scholar
  100. Ruiz-Aguilar GM, Fernández-Sánchez JM, Rodríguez-Vázquez R, Poggi-Varaldo H (2002) Degradation by white rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv Environ Res 6:559–568Google Scholar
  101. Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452Google Scholar
  102. Ryan TP, Bumpus JA (1989) Biodegradation of 2, 4, 5-trichlorophenoxyacetic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 31:302–307Google Scholar
  103. Sanino F, Filazzola MT, Violante A, Gianfreda L (1999) Fate of herbicides influenced by biotic and abiotic interactions. Chemosphere 39:333–341Google Scholar
  104. Sato A, Watanabe T, Watanabe Y, Harazono K, Fukatsu T (2002) Screening for basidiomycetous fungi capable of degrading 2, 7-dichlorodibenzo-p-dioxin. FEMS Microbiol Lett 213:213–217Google Scholar
  105. Schultz A, Jonas U, Hammer E, Schauer F (2001) Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl Environ Microbiol 67:4377–4381Google Scholar
  106. Shah MM, Grover TA, Aust SD (1993) Reduction of CCl4 to the trichloromethyl radical by lignin peroxidase H2 from Phanerochaete chrysosporium. Biochem Biophys Res Commun 191:887–892Google Scholar
  107. Singh BK, Kuhad RC (1999) Biodegradation of lindane (gamma-hexachlorocyclohexane) by the white rot fungus Trametes hirsutus. Lett Appl Microbiol 28:238–241Google Scholar
  108. Singh BK, Kuhad RC (2000) Degradation of insecticide lindane (?-HCH) by white rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56:142–146Google Scholar
  109. Subramanian V, Yadav JS (2008) Regulation and heterologous expression of P450 enzyme system components of the white rot fungus Phanerochaete chrysosporium. Enzyme Microb Technol 43:205–213Google Scholar
  110. Sugiura T, Yamagishi K, Kimura T, Nishida T, Kawagishi H, Hirai H (2009) Cloning and homologous expression of novel lignin peroxidase genes in the white-rot fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 73:1793–1798Google Scholar
  111. Suhara H, Daikoku C, Takata H, Suzuki S, Matsufuji Y, Sakai K, Kondo R (2003) Monitoring of white rot fungus during bioremediation of polychlorinated dioxin-contaminated fly ash. Appl Microbiol Biotechnol 62:601–607Google Scholar
  112. Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl Environ Microbiol 62:4323–4328Google Scholar
  113. ten Have R, Hartmans S, Teunissen PJ, Field JA (1998) Purification and characterization of two lignin peroxidase isozymes produced by Bjerkandera sp. strain BOS55. FEBS Lett 422:391–394Google Scholar
  114. Thomas DR, Carswell KS, Georgiou G (1992) Mineralization of biphenyl and PCBs by the white rot fungus Phanerochaete chrysosporium. Biotechnol Bioeng 40:1395–1402Google Scholar
  115. Thurston CF (1994) The structure and function of fungal laccases. Microbiol 140:19–26Google Scholar
  116. Valli K, Wariishi H, Gold MH (1992) Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174:2131–2137Google Scholar
  117. Vanden Wymelenberg V, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, Putnam N, Belinky P, Dosoretz C, Gaskell J, Kersten P, Cullen D (2006) Computational analysis of the Phanerochaete chrysosporium v2.0 genome data base and mass spectrometrry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 43:342–356Google Scholar
  118. Vanden Wymelenberg V, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, Cullen D (2009) Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol 75:4058–4068Google Scholar
  119. Vyas BRM, Šašek V, Matucha M, Bubner M (1994) Degradation of 3,3?,4,4?-tetrachlorobiphenyl by selected white rot fungi. Chemosphere 28:1127–1134Google Scholar
  120. Wesenberg D, Kyriakides I, Agatho SN (2003) White rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187Google Scholar
  121. Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209Google Scholar
  122. Yadav JS, Reddy CA (1992) Non-involvement of lignin peroxidases and manganese peroxidases in 2, 4, 5-trichlorophenoxyacetic acid degradation by Phanerochaete chrysosporium. Biotechnol Lett 14:1089–1092Google Scholar
  123. Yadav JS, Reddy CA (1993) Mineralization of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and mixtures of 2, 4-D and 2, 4, 5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium. Appl Environ Microbiol 59:2904–2908Google Scholar
  124. Yadav JS, Quensen JF, Tiedje JM, Reddy CA (1995a) Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl Environ Microbiol 61:2560–2565Google Scholar
  125. Yadav JS, Wallace RE, Reddy CA (1995b) Mineralization of mono- and dichlorobenzenes and simultaneous degradation of chloro- and methyl-substituted benzenes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61:677–680Google Scholar
  126. Yadav JS, Bethea C, Reddy CA (2000) Mineralization of trichloroethylene (TCE) by the white rot fungus Phanerochaete chrysosporium. Bull Environ Contam Toxicol 65:28–34Google Scholar
  127. Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169Google Scholar
  128. Zhao Y, Yi X (2010) Effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi. Int J Environ Res Public Health 7:1612–1621Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Institute of Environmental Science and TechnologyAutonomous University of BarcelonaBarcelonaSpain
  2. 2.Department of Microbiology and Molecular Genetics and The NSF Center for Microbial EcologyMichigan State UniversityEast LansingUSA

Personalised recommendations