On the Relative Efficiency of DPLL and OBDDs with Axiom and Join

  • Matti Järvisalo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6876)


This paper studies the relative efficiency of ordered binary decision diagrams (OBDDs) and the Davis-Putnam-Logemann-Loveland procedure (DPLL), two of the main approaches to solving Boolean satisfiability instances. Especially, we show that OBDDs, even when constructed using only the rather weak axiom and join rules, can be exponentially more efficient than DPLL or, equivalently, tree-like resolution. Additionally, by strengthening via simple arguments a recent result—stating that such OBDDs do not polynomially simulate unrestricted resolution—we also show that the opposite holds: there are cases in which DPLL is exponentially more efficient out of the two considered systems. Hence DPLL and OBDDs constructed using only the axiom and join rules are polynomially incomparable. This further highlights differences between search-based and compilation-based approaches to Boolean satisfiability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Groote, J.F., Zantema, H.: Resolution and binary decision diagrams cannot simulate each other polynomially. Discrete Applied Mathematics 130(2), 157–171 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Segerlind, N.: On the relative efficiency of resolution-like proofs and ordered binary decision diagram proofs. In: Proc. CCC, pp. 100–111. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  5. 5.
    Peltier, N.: Extended resolution simulates binary decision diagrams. Discrete Applied Mathematics 156(6), 825–837 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Tveretina, O., Sinz, C., Zantema, H.: Ordered binary decision diagrams, pigeonhole formulas and beyond. Journal on Satisfiability, Boolean Modeling and Computation 7, 35–58 (2010)MathSciNetMATHGoogle Scholar
  7. 7.
    Chen, W., Zhang, W.: A direct construction of polynomial-size OBDD proof of pigeon hole problem. Information Processing Letters 109(10), 472–477 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artificial Intelligence 175(2), 512–525 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, Part II. Seminars in Mathematics, V.A.Steklov Mathematical Institute, Leningrad, vol. 8, pp. 115–125. Consultants Bureau (1969) (originally in Russian)Google Scholar
  12. 12.
    Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the ACM 48(2), 149–169 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Liaw, H.T., Lin, C.S.: On the OBDD-representation of general boolean functions. IEEE Transactions on Computers 41(6), 661–664 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Buresh-Oppenheim, J., Pitassi, T.: The complexity of resolution refinements. Journal of Symbolic Logic 72(4), 1336–1352 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. Mathematical Systems Theory 10, 239–251 (1977)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams. Parallel Processing Letters 3, 3–12 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Krajicek, J.: Speed-up for propositional frege systems via generalizations of proofs. Commentationes Mathematicae Universitas Carolinae 30(1), 137–140 (1989)MathSciNetMATHGoogle Scholar
  18. 18.
    Järvisalo, M., Junttila, T.: Limitations of restricted branching in clause learning. Constraints 14(3), 325–356 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Haken, A.: The intractability of resolution. Theoretical Computer Science 39(2-3), 297–308 (1985)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT News 8(4), 28–32 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matti Järvisalo
    • 1
  1. 1.Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations