Abstract

The connection between the complexity of constraint languages and clone theory, discovered by Cohen and Jeavons in a series of papers, has been a fruitful line of research on the complexity of CSPs. In a recent result, Cohen et al. [14] have established a Galois connection between the complexity of valued constraint languages and so-called weighted clones. In this paper, we initiate the study of weighted clones. Firstly, we prove an analogue of Rosenberg’s classification of minimal clones for weighted clones. Secondly, we show minimality of several weighted clones whose support clone is generated by a single minimal operation. Finally, we classify all Boolean weighted clones. This classification implies a complexity classification of Boolean valued constraint languages obtained by Cohen et al. [13]

Keywords

Cost Function Constraint Satisfaction Problem Galois Connection Constraint Language Suitable Scaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barto, L., Kozik, M., Maróti, M., Niven, T.: CSP dichotomy for special triads. Proceedings of the American Mathematical Society 137(9), 2921–2934 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barto, L., Kozik, M., Niven, T.: The CSP dichotomy holds for digraphs with no sources and no sinks. SIAM Journal on Computing 38(5), 1782–1802 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Barto, L.: The dichotomy for conservative constraint satisfaction problems revisited. In: Proc. of LICS 2011 (2011)Google Scholar
  4. 4.
    Barto, L., Kozik, M.: Constraint Satisfaction Problems of Bounded Width. In: Proc. of FOCS 2009, pp. 461–471 (2009)Google Scholar
  5. 5.
    Berman, J., Idziak, P., Marković, P., McKenzie, R., Valeriote, M., Willard, R.: Varieties with few subalgebras of powers. Trans. of AMS 362(3), 1445–1473 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint languages. In: Proc. of STOC 2001, pp. 667–674 (2001)Google Scholar
  7. 7.
    Bulatov, A.: A Graph of a Relational Structure and Constraint Satisfaction Problems. In: Proc. of LICS 2004, pp. 448–457 (2004)Google Scholar
  8. 8.
    Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of the ACM 53(1), 66–120 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the Complexity of Constraints using Finite Algebras. SIAM Journal on Computing 34(3), 720–742 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bulatov, A.A.: Tractable Conservative Constraint Satisfaction Problems. In: Proc. of LICS 2003, pp. 321–330 (2003)Google Scholar
  11. 11.
    Cohen, D.A., Cooper, M.C., Jeavons, P.G.: An Algebraic Characterisation of Complexity for Valued Constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 107–121. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Cohen, D.A., Cooper, M.C., Jeavons, P.G.: Generalising submodularity and Horn clauses: Tractable optimization problems defined by tournament pair multimorphisms. Theoretical Computer Science 401(1-3), 36–51 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The Complexity of Soft Constraint Satisfaction. Artificial Intelligence 170(11), 983–1016 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cohen, D., Creed, P., Jeavons, P., Živný, S.: An algebraic theory of complexity for valued constraints: Establishing a Galois connection. In: Murlak, F., Sankowski, P. (eds.) Mathematical Foundations of Computer Science 2011. LNCS, vol. 6907, pp. 231–242. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Creignou, N.: A dichotomy theorem for maximum generalized satisfiability problems. Journal of Computer and System Sciences 51(3), 511–522 (1995)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7. SIAM, Philadelphia (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Csákány, B.: Minimal clones – a minicourse. Algebra Universalis 54(1), 73–89 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Denecke, K., Wismath, S.: Universal Algebra and Applications in Theoretical Computer Science. Chapman and Hall/CRC Press (2002)Google Scholar
  19. 19.
    Feder, T., Vardi, M.: The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on Computing 28(1), 57–104 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Jeavons, P.: On the Algebraic Structure of Combinatorial Problems. Theoretical Computer Science 200(1-2), 185–204 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Jeavons, P., Cohen, D., Gyssens, M.: Closure Properties of Constraints. Journal of the ACM 44(4), 527–548 (1997)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kolmogorov, V., Živný, S.: The complexity of conservative finite-valued CSPs. Technical repport arXiv:1008.1555 (August 2010)Google Scholar
  23. 23.
    Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs (submitted for publication, 2011)Google Scholar
  24. 24.
    Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization (1988)Google Scholar
  25. 25.
    Post, E.: The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies, vol. 5. Princeton University Press, Princeton (1941)MATHGoogle Scholar
  26. 26.
    Rosenberg, I.: Minimal Clones I: the five types. In: Lectures in Universal Algebra (Proc. Conf. Szeged 1983). Colloq. Math. Soc. Janos Bolyai, vol. 43, pp. 405–427. North-Holland, Amsterdam (1986)Google Scholar
  27. 27.
    Schaefer, T.: The Complexity of Satisfiability Problems. In: Proc. of STOC 1978, pp. 216–226 (1978)Google Scholar
  28. 28.
    Schrijver, A.: Theory of linear and integer programming (1986)Google Scholar
  29. 29.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency (2003)Google Scholar
  30. 30.
    Świerczkowski, S.: Algebras which are independently generated by every n elements. Fundamenta Mathematicae 49, 93–104 (1960)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Páidí Creed
    • 1
  • Stanislav Živný
    • 2
  1. 1.Department of Computer ScienceRoyal Holloway, University of LondonUK
  2. 2.University CollegeUniversity of OxfordUK

Personalised recommendations