Advertisement

A Shapley Value Approach for Influence Attribution

  • Panagiotis Papapetrou
  • Aristides Gionis
  • Heikki Mannila
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6912)

Abstract

Finding who and what is “important” is an ever-occurring question. Many methods that aim at characterizing important items or influential individuals have been developed in areas such as, bibliometrics, social-network analysis, link analysis, and web search. In this paper we study the problem of attributing influence scores to individuals who accomplish tasks in a collaborative manner. We assume that individuals build small teams, in different and diverse ways, in order to accomplish atomic tasks. For each task we are given an assessment of success or importance score, and the goal is to attribute those team-wise scores to the individuals. The challenge we face is that individuals in strong coalitions are favored against individuals in weaker coalitions, so the objective is to find fair attributions that account for such biasing. We propose an iterative algorithm for solving this problem that is based on the concept of Shapley value. The proposed method is applicable to a variety of scenarios, for example, attributing influence scores to scientists who collaborate in published articles, or employees of a company who participate in projects. Our method is evaluated on two real datasets: ISI Web of Science publication data and the Internet Movie Database.

Keywords

Shapley value influence attribution impact factors 

References

  1. 1.
    Aadithya, K.V., Ravindran, B., Michalak, T.P., Jennings, N.R.: Efficient computation of the shapley value for centrality in networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 1–13. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Aziz, H.: Algorithmic and complexity aspects of simple coalitional games. PhD thesis, University of Warwick (2009)Google Scholar
  3. 3.
    Deegan, J., Packel, E.W.: A new index of power for simple n-person games. International Journal of Game Theory 7(2) (1978)Google Scholar
  4. 4.
    Deng, X., Fang, Q.: Algorithmic cooperative game theory. Pareto Optimality, Game Theory and Equilibria 17(1), 159–185 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD, pp. 57–66 (2001)Google Scholar
  6. 6.
    Egghe, L.: Theory and practise of the G-index. Scientometrics 69 (2006)Google Scholar
  7. 7.
    Garfield, E.: Citation analysis as a tool in journal evaluation. Science 178(4060), 471–479 (1972)CrossRefGoogle Scholar
  8. 8.
    Geller, N.: COn the citation influence methodology of Pinski and Narin. Information Processing & Management 14, 93–95 (1978)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gomez, D., Gonzalez-Aranguena, E., Manuel, C., Owen, G., del Pozo, M., Tejada, J.: Centrality and power in social networks: a game theoretic approach. Mathematical Social Sciences 46(1), 27–54 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America 102(46), 16569–16572 (2005)CrossRefGoogle Scholar
  11. 11.
    Hubbell, C.H.: An input-output approach to clique identification. Sociometry 28(4), 377–399 (1965)CrossRefGoogle Scholar
  12. 12.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)Google Scholar
  14. 14.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    MasColell, A., Whinston, M., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  16. 16.
    Narayanam, R., Narahari, Y.: A shapley value-based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering 8(1) (2011)Google Scholar
  17. 17.
    Newman, M.E.J.: The mathematics of networks. The New Palgrave Encyclopedia of Economics (2007)Google Scholar
  18. 18.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web (1999)Google Scholar
  19. 19.
    Pinski, G., Narin, F.: Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Processing & Management 12, 297–312 (1976)CrossRefGoogle Scholar
  20. 20.
    Radicchi, F., Fortunato, S., Markines, B., Vespignani, A.: Diffusion of scientific credits and the ranking of scientists. Phys. Rev. E 80(5), 056103 (2009)CrossRefGoogle Scholar
  21. 21.
    Rehn, C., Kronman, U., Wadskog, D.: Bibliometric indicators – definitions and usage at Karolinska Institutet. Technical report (2007)Google Scholar
  22. 22.
    Shapley, L.S.: A value for n-person games. Annals of Mathematical Studies 28, 307–317 (1953)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Winter, E.: The Shapley value. In: Handbook of Game Theory with Economic Applications, vol. 3 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Panagiotis Papapetrou
    • 1
    • 2
  • Aristides Gionis
    • 3
  • Heikki Mannila
    • 1
    • 2
  1. 1.Department of Information and Computer ScienceAalto UniversityFinland
  2. 2.Helsinki Institute for Information Technology (HIIT)Finland
  3. 3.Yahoo! ResearchBarcelonaSpain

Personalised recommendations