Kernels for Link Prediction with Latent Feature Models

  • Canh Hao Nguyen
  • Hiroshi Mamitsuka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6912)

Abstract

Predicting new links in a network is a problem of interest in many application domains. Most of the prediction methods utilize information on the network’s entities such as nodes to build a model of links. Network structures are usually not used except for the networks with similarity or relatedness semantics. In this work, we use network structures for link prediction with a more general network type with latent feature models. The problem is the difficulty to train these models directly for large data. We propose a method to solve this problem using kernels and cast the link prediction problem into a binary classification problem. The key idea is not to infer latent features explicitly, but to represent these features implicitly in the kernels, making the method scalable to large networks. In contrast to the other methods for latent feature models, our method inherits all the advantages of kernel framework: optimality, efficiency and nonlinearity. We apply our method to real data of protein-protein interactions to show the merits of our method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic blockmodels. Journal of Machine Learning Research 9, 1981–2014 (2008)MATHGoogle Scholar
  2. 2.
    Ben-Hur, A., Noble, W.S.: Kernel methods for predicting protein-protein interactions. In: ISMB (Supplement of Bioinformatics), pp. 38–46 (2005)Google Scholar
  3. 3.
    Bleakley, K., Biau, G., Vert, J.-P.: Supervised reconstruction of biological networks with local models. In: ISMB/ECCB (Supplement of Bioinformatics), pp. 57–65 (2007)Google Scholar
  4. 4.
    Deng, M., Mehta, S., Sun, F., Chen, T.: Inferring domain-domain interactions from protein-protein interactions. In: Proceedings of the Sixth Annual International Conference on Computational Biology, pp. 117–126. ACM Press, New York (2002)Google Scholar
  5. 5.
    Ding, C.: Orthogonal nonnegative matrix tri-factorizations for clustering. In: SIGKDD, pp. 126–135 (2006)Google Scholar
  6. 6.
    Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2007)MATHGoogle Scholar
  7. 7.
    Kandola, J.S., Shawe-Taylor, J., Cristianini, N.: Learning semantic similarity. In: NIPS, pp. 657–664 (2002)Google Scholar
  8. 8.
    Kato, T., Tsuda, K., Asai, K.: Selective integration of multiple biological data for supervised network inference. Bioinformatics 21(10), 2488–2495 (2005)CrossRefGoogle Scholar
  9. 9.
    Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning systems of concepts with an infinite relational model. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 1, pp. 381–388. AAAI Press, Menlo Park (2006)Google Scholar
  10. 10.
    Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input spaces. In: ICML, pp. 315–322 (2002)Google Scholar
  11. 11.
    Kunegis, J., Lommatzsch, A.: Learning spectral graph transformations for link prediction. In: ICML 2009: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 561–568. ACM, New York (2009)Google Scholar
  12. 12.
    Liben-Nowell, D., Kleinberg, J.M.: The link prediction problem for social networks. In: CIKM, pp. 556–559 (2003)Google Scholar
  13. 13.
    Miller, K., Griffiths, T., Jordan, M.: Nonparametric latent feature models for link prediction. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 1276–1284 (2009)Google Scholar
  14. 14.
    Navarro, D.J., Griffiths, T.L.: A nonparametric bayesian method for inferring features from similarity judgments. In: NIPS, pp. 1033–1040 (2006)Google Scholar
  15. 15.
    Newman, M.E.J.: Clustering and preferential attachment in growing networks. Physical Review E 64(2), 025102+ (2001)Google Scholar
  16. 16.
    Shimbo, M., Ito, T., Mochihashi, D., Matsumoto, Y.: On the properties of von neumann kernels for link analysis. Machine Learning Journal 75(1), 37–67 (2009)CrossRefGoogle Scholar
  17. 17.
    Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Vert, J.-P., Yamanishi, Y.: Supervised graph inference. In: NIPS (2004)Google Scholar
  19. 19.
    Yamanishi, Y.: Supervised bipartite graph inference. In: NIPS, pp. 1841–1848 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Canh Hao Nguyen
    • 1
  • Hiroshi Mamitsuka
    • 1
  1. 1.Bioinformatics Center, ICRKyoto UniversityKyotoJapan

Personalised recommendations