Supporting Window Switching with Spatially Consistent Thumbnail Zones: Design and Evaluation

  • Susanne Tak
  • Joey Scarr
  • Carl Gutwin
  • Andy Cockburn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6946)

Abstract

Computer users switch between applications and windows all day, but finding the target window can be difficult, particularly when the total number of windows is high. We describe the design and evaluation of a new window switcher called SCOTZ (for Spatially Consistent Thumbnail Zones). SCOTZ is a window switching interface which shows all windows grouped by application and allocates more space to the most frequently revisited applications. The two key design principles of SCOTZ are (1) predictability of window locations, and (2) improved accessibility of recently and frequently used windows. We describe the design and features of SCOTZ, and present the findings from qualitative and empirical studies which demonstrate that SCOTZ yields performance and preference benefits over existing window switching tools.

Keywords

window switching revisitation spatial stability predictability 

Supplementary material

Electronic Supplementary material (1,996 KB)

References

  1. 1.
    Hutchings, D.R., Stasko, J.: Revisiting display space management: understanding current practice to inform next-generation design. In: Proc. of GI 2004, pp. 127–134. Canadian Human-Computer Communications Society (2004)Google Scholar
  2. 2.
    Tak, S., Cockburn, A., Humm, K., Ahlström, D., Gutwin, C., Scarr, J.: Improving window switching interfaces. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 187–200. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bannon, L., Cypher, A., Greenspan, S., Monty, M.L.: Evaluation and analysis of users’ activity organization. In: Proc. of CHI 1983, pp. 54–57. ACM Press, New York (1983)Google Scholar
  4. 4.
    Henderson, D.A., Card, S.: Rooms: the use of multiple virtual workspaces to reduce space contention in a window-based graphical user interface. ACM Trans. Graph. 5(3), 211–243 (1986)CrossRefGoogle Scholar
  5. 5.
    Smith, G., Baudisch, P., Robertson, G., Czerwinski, M., Meyers, B., Robbins, D., Horvitz, E., Andrews, D.: Groupbar: The taskbar evolved. In: Proc. of OzCHI 2003, pp. 34–43 (2003)Google Scholar
  6. 6.
    Bardram, J., Bunde-Pedersen, J., Soegaard, M.: Support for activity-based computing in a personal computing operating system. In: Proc. of CHI 2006, pp. 211–220. ACM Press, New York (2006)Google Scholar
  7. 7.
    Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P., Hutchings, D., Meyers, B., Robbins, D., Smith, G.: Scalable fabric: Flexible task management. In: Proc. of AVI 2004, pp. 85–89. ACM Press, New York (2004)Google Scholar
  8. 8.
    Robertson, G., van Dantzich, M., Czerwinski, M., Hinckley, K., Thiel, D., Robbins, D., Risden, K., Gorokhovsky, V.: The task gallery: A 3D window manager. In: Proc. of CHI 2000, pp. 494–501 (2000) Google Scholar
  9. 9.
    Kaptelinin, V.: Umea: translating interaction histories into project contexts. In: Proc. of CHI 2003, pp. 353–360. ACM, New York (2003)Google Scholar
  10. 10.
    Dragunov, A.N., Dietterich, T.G., Johnsrude, K., McLaughlin, M., Li, L., Herlocker, J.L.: Tasktracer: a desktop environment to support multi-tasking knowledge workers. In: Proc. of IUI 2005, pp. 75–82. ACM, New York (2005)CrossRefGoogle Scholar
  11. 11.
    Oliver, N., Smith, G., Thakkar, C., Surendran, A.: Swish: Semantic analysis of window titles and switching history. In: Proc. of IUI 2006, pp. 194–201. ACM Press, New York (2006)CrossRefGoogle Scholar
  12. 12.
    Oliver, N., Czerwinski, M., Smith, G., Roomp, K.: Relalttab: assisting users in switching windows. In: Proc. of IUI 2008, pp. 385–388. ACM, New York (2008)CrossRefGoogle Scholar
  13. 13.
    Xu, Q., Casiez, G.: Push-and-pull switching: window switching based on window overlapping. In: Proc. of CHI 2010, pp. 1335–1338. ACM, New York (2010)Google Scholar
  14. 14.
    Shneiderman, B.: Direct manipulation for comprehensible, predictable and controllable user interfaces. In: Proc. of IUI 1997, pp. 33–39. ACM, New York (1997)CrossRefGoogle Scholar
  15. 15.
    Tashman, C.: Windowscape: A task oriented window manager. In: Proc. of UIST 2006, pp. 77–80. ACM Press, New York (2006)CrossRefGoogle Scholar
  16. 16.
    Bernstein, M., Shrager, J., Winograd, T.: Taskposé: exploring fluid boundaries in an associative window visualization. In: Proc. of UIST 2008, pp. 231–234. ACM, New York (2008)CrossRefGoogle Scholar
  17. 17.
    Gaylin, K.B.: How are windows used? Some notes on creating an empirically-based windowing benchmark task. In: Proc. of CHI 1986, pp. 96–100 (1986) Google Scholar
  18. 18.
    Hutchings, D., Smith, G., Meyers, B., Czerwinski, M., Robertson, G.: Display space usage and window management operation comparisons between single monitor and multiple monitor users. In: Proc. of AVI 2004, pp. 32–39. ACM Press, New York (2004)Google Scholar
  19. 19.
    de Chiara, R., Erra, U., Scarano, V.: A visual adaptive interface to file systems. In: Proc. of AVI 2004, pp. 366–369. ACM, New York (2004)Google Scholar
  20. 20.
    Grudin, J.: Partitioning digital worlds: Focal and peripheral awareness in multiple monitor use. In: Proc. of CHI 2001, pp. 458–465 (2001) Google Scholar
  21. 21.
    Kumar, M., Paepcke, A., Winograd, T.: Eyeexpose: Switching applications with your eyes. Tech. rep. (2007) Google Scholar
  22. 22.
    Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph. 11(1), 92–99 (1992)MATHCrossRefGoogle Scholar
  23. 23.
    Tu, Y., Shen, H.: Visualizing changes of hierarchical data using treemaps. IEEE Transactions on Visualization and Computer Graphics, 1286–1293 (2007) Google Scholar
  24. 24.
    Bruls, M., Huizing, K., Wijk, J.v.: Squarified treemaps. In: Proceedings of Joint Eurographics and IEEE, pp. 33–42. IEEE Press, Los Alamitos (2000)Google Scholar
  25. 25.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47, 381–391 (1954)CrossRefGoogle Scholar
  26. 26.
    Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5(6), 495–501 (2004)CrossRefGoogle Scholar
  27. 27.
    Dulberg, M.S., Amant, R., Zettlemoyer, L.: An imprecise mouse gesture for the fast activation of controls. In: Proc. of INTERACT 1999, pp. 375–382 (1999) Google Scholar
  28. 28.
    Blom, J.: Personalization: a taxonomy. In: Proc. of CHI 2000 Extended Abstracts, pp. 313–314. ACM, New York (2000)CrossRefGoogle Scholar
  29. 29.
    Masson, M.E.J., Loftus, G.R.: Using confidence intervals for graphically based data interpretation. Canadian Journal of Experimental Psychology 57(3), 203–220 (2003)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Susanne Tak
    • 1
  • Joey Scarr
    • 1
  • Carl Gutwin
    • 2
  • Andy Cockburn
    • 1
  1. 1.Computer Science and Software EngineeringUniversity of CanterburyChristchurchNew Zealand
  2. 2.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations