Estimating the Perceived Difficulty of Pen Gestures

  • Radu-Daniel Vatavu
  • Daniel Vogel
  • Géry Casiez
  • Laurent Grisoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6947)

Abstract

Our empirical results show that users perceive the execution difficulty of single stroke gestures consistently, and execution difficulty is highly correlated with gesture production time. We use these results to design two simple rules for estimating execution difficulty: establishing the relative ranking of difficulty among multiple gestures; and classifying a single gesture into five levels of difficulty. We confirm that the CLC model does not provide an accurate prediction of production time magnitude, and instead show that a reasonably accurate estimate can be calculated using only a few gesture execution samples from a few people. Using this estimated production time, our rules, on average, rank gesture difficulty with 90% accuracy and rate gesture difficulty with 75% accuracy. Designers can use our results to choose application gestures, and researchers can build on our analysis in other gesture domains and for modeling gesture performance.

Keywords

gesture-based interfaces pen input gesture descriptors 

References

  1. 1.
    Appert, C., Zhai, S.: Using strokes as command shortcuts: cognitive benefits and toolkit support. In: Proceedings of CHI 2009, pp. 2289–2298. ACM Press, New York (2009)Google Scholar
  2. 2.
    Ashbrook, D., Starner, T.: Magic: a motion gesture design tool. In: Proceedings of the CHI 2010, pp. 2159–2168. ACM Press, New York (2010)Google Scholar
  3. 3.
    Bau, O., Mackay, W.E.: Octopocus: a dynamic guide for learning gesture-based command sets. In: Proceedings of UIST 2008, pp. 37–46. ACM Press, New York (2008)CrossRefGoogle Scholar
  4. 4.
    Cao, X., Zhai, S.: Modeling human performance of pen stroke gestures. In: Proceedings of CHI 2007, pp. 1495–1504. ACM Press, New York (2007)Google Scholar
  5. 5.
    Castellucci, S.J., MacKenzie, I.S.: Graffiti vs. unistrokes: an empirical comparison. In: Proceedings of CHI 2008, pp. 305–308. ACM Press, New York (2008)Google Scholar
  6. 6.
    Chen, P., Popovich, P.: Correlation: Parametric and nonparametrized measures. Thousand Oaks, Sage (2002)Google Scholar
  7. 7.
    Grange, S., Fong, T., Baur, C.: Moris: a medical/operating room interaction system. In: Proceedings ICMI 2004, pp. 159–166. ACM Press, New York (2004)CrossRefGoogle Scholar
  8. 8.
    Isokoski, P.: Model for unistroke writing time. In: Proceedings of CHI 2001, pp. 357–364. ACM Press, New York (2001)Google Scholar
  9. 9.
    Kratz, S., Rohs, M.: A $3 gesture recognizer: simple gesture recognition for devices equipped with 3d acceleration sensors. In: Proc. of IUI 2010, pp. 341–344. ACM Press, New York (2010)Google Scholar
  10. 10.
    Kristensson, P.-O., Zhai, S.: Shark2: a large vocabulary shorthand writing system for pen-based computers. In: Proceedings of UIST 2004, pp. 43–52. ACM Press, New York (2004)CrossRefGoogle Scholar
  11. 11.
    Kurtenbach, G., Moran, T.P., Buxton, W.A.S.: Contextual animation of gestural commands. Computer Graphics Forum 13(5), 305–314 (1994)CrossRefGoogle Scholar
  12. 12.
    Li, Y.: Protractor: a fast and accurate gesture recognizer. In: Proceedings of CHI 2010, pp. 2169–2172. ACM Press, New York (2010)Google Scholar
  13. 13.
    Long Jr., A.C., Landay, J.A., Rowe, L.A.: Helping designers create recognition-enabled interfaces. In: Multimodal Interface for Human-Machine Communication, pp. 121–146 (2002)Google Scholar
  14. 14.
    Long Jr., A.C., Landay, J.A., Rowe, L.A.: Implications for a gesture design tool. In: Proceedings of CHI 1999, pp. 40–47. ACM Press, New York (1999)Google Scholar
  15. 15.
    Long Jr., A.C., Landay, J.A., Rowe, L.A., Michiels, J.: Visual similarity of pen gestures. In: Proceedings of CHI 2000, pp. 360–367. ACM Press, New York (2000)Google Scholar
  16. 16.
    Morris, M.R., Wobbrock, J.O., Wilson, A.D.: Understanding users’ preferences for surface gestures. In: Proceedings of GI 2010, pp. 261–268. Canadian Inf. Processing Society (2010)Google Scholar
  17. 17.
    Nielsen, M., Störring, M., Moeslund, T.B., Granum, E.: A procedure for developing intuitive and ergonomic gesture interfaces for HCI. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 409–420. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Pratt, W.: Digital Image Processing, 3rd edn. John Wiley & Sons, Inc., Chichester (2001)CrossRefGoogle Scholar
  19. 19.
    Rico, J., Brewster, S.: Usable gestures for mobile interfaces: evaluating social acceptability. In: Proceedings of CHI 2010, pp. 887–896. ACM Press, New York (2010)Google Scholar
  20. 20.
    Rubine, D.: Specifying gestures by example. SIGGRAPH Computer Graphics 25(4), 329–337 (1991)CrossRefGoogle Scholar
  21. 21.
    Schomaker, L.: From handwriting analysis to pen-computer applications. IEEE Electronics and Communications Engineering Journal 10(3), 93–102 (1998)CrossRefGoogle Scholar
  22. 22.
    Viviani, P., Flash, T.: Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. Journal of Experimental Psychology: Human Perception and Performance 21(1), 32–53 (1995)CrossRefGoogle Scholar
  23. 23.
    Viviani, P., Terzuolo, C.: 32 space-time invariance in learned motor skills. In: Tutorials in Motor Behavior. Advances in Psychology, vol. 1, pp. 525–533. North-Holland, Amsterdam (1980)Google Scholar
  24. 24.
    Webb, A.: Statistical Pattern Recognition. John Wiley & Sons, Inc., Chichester (2002)MATHCrossRefGoogle Scholar
  25. 25.
    Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Proceedings of CHI 2009, pp. 1083–1092. ACM Press, New York (2009)Google Scholar
  26. 26.
    Wobbrock, J.O., Wilson, A.D., Li, Y.: Gestures without libraries, toolkits or training: a $1 recognizer for user interface prototypes. In: Proceedings of UIST 2007, pp. 159–168. ACM Press, New York (2007)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Radu-Daniel Vatavu
    • 1
  • Daniel Vogel
    • 2
    • 3
  • Géry Casiez
    • 2
  • Laurent Grisoni
    • 2
  1. 1.University Stefan cel Mare of SuceavaRomania
  2. 2.LIFL, INRIA Lille & University of LilleFrance
  3. 3.Mount Allison UniversityCanada

Personalised recommendations