Research on Chaos Caused by a Transitive Map Based on Intelligent Materials

  • Lidong Wang
  • Yuelin Gao
  • Wing-Kuen Ling
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 105)


Let (X, d) be a compact metric space, and (\(\mathcal{K}\)(X),H) is d induced Hausdorff metric space of all non-empty compact subsets of X. In the paper, we investigated the distributional chaoticity in a sequence of discrete dynamical system (X, f) and the distributional chaoticity in a sequence of set-valued discrete system (\(\mathcal{K}\)(X),). And we gave a sufficient condition about the existence of distributionally chaotic sets in a sequence in discrete system (X, f) and discrete dynamical system (\(\mathcal{K}\), H).


Set-valued discrete systems distributional chaos in a sequence periodic points Hausdorff metric 


  1. 1.
    Andres, J., Fiser, J., Juttner, L.: On a multivalued version of the Sharkovskii theorem and its application to differential inclusions. Set-Valued Analysis 10, 1–14 (2002)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Andres, J., Juttner, L.: Period three plays a negative role in a multivaluedversion of Sharkovskii’s theorem. Nonlinear Analysis 51, 1101–1104 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Roman-Flores, H.: A note on transitivity in set-valued discrete systems. Chaos Solitons and Fractals 17, 99–104 (2003)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ashwin, P.: Attractors of a randomly forced electronic oscillator. Physica D 125, 302–310 (1999)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kaczynski, T., Mrozek, M.: Conley index for discrete multivalued systems. Topology and Its Application 65, 83–96 (1995)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Fedeli: On chaotic set-valued discrete dynamical systems. Chaos Solitons and Fractals 23, 1381–1384 (2005)MathSciNetMATHGoogle Scholar
  7. 7.
    Gongfu, L., Lidong, W., Yucheng, Z.: Transitivity, mixing and chaos for a class of set-valued mappings. Science in China(Series A) 49, 1–8 (2006)MATHGoogle Scholar
  8. 8.
    Gongfu, L., Xiangfeng, M., Lidong, W.: Individual chaos implies collective chaos for weakly mixing discrete dynamical systems. Chaos Solitons and Fractals, Online (2005) (in press)Google Scholar
  9. 9.
    Peris: Set-valued chaos. Chaos Solitons and Fractals 26, 19–23 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Rongbao, G., Wenjing, G.: On mixing property in set-valued discrete systems. Chaos Solitons and Fractals 28, 747–754 (2006)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Roman-Flores, H., Chalco-Cano, Y.: Robinson’s chaos in set-valued discrete systems. Chaos Solitons and Fractals 25, 33–42 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Schweizer, B., Smital, J.: Measure of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer. Soc. 334(2), 737–754 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, L.: The probability properties in compact systems-ergode and distribution chaos, Ph. D. Dissertation, Jilin University (1999) (in Chinese)Google Scholar
  14. 14.
    Zhou, Z.: Symbolic Dynamical, Shanghai Scientific and Technological Education Publishing House (1997) (in Chinese)Google Scholar
  15. 15.
    Yang, R.: Distribution Chaos in a Sequence and Topologically Mixing. ACTA Mathematica SINICA 45, 753–758 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lidong Wang
    • 1
    • 2
  • Yuelin Gao
    • 2
  • Wing-Kuen Ling
    • 3
  1. 1.School of ScienceDalian Nationalities UniversityDalianPR China
  2. 2.School of Information and Computing ScienceBeifang University of NationalityYinchuanPR China
  3. 3.School of EngineeringUniversity of LincolnLincolnUnited Kingdom

Personalised recommendations