Advertisement

Sources of Spectral Photon Radiation

  • Hans-Joachim Lewerenz
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 157)

Abstract

The chapter treats the various experimental methods to generate high-energy photons from accelerated and relativistic charges, relevant for applications in chemistry, biology, material science and physics which will be treated in Chaps.

Keywords

Density Modulation Black Body Radiation Free Electron Laser Electron Bunch Perturbed Angular Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.B. Patel, Nuclear Physics: An Introduction (New Age International (P) Ltd. Publishers, 1991), p. 322 (reprint, 2006)Google Scholar
  2. 2.
    R.J. Bickerton, The purpose, status and future of fusion research, Plasma Phys. Control. Fusion 35, B3–B21 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    F.E. Cecil, D.M. Cole, F.J. Wilkinson III, S.S. Medley, Measurement and application of DDγ, DTγ and D3Heγ reactions at low energy, Nucl. Instrum. Meth. Phys. Res. B 10/11, 411–414 (1985)Google Scholar
  4. 4.
    J.M. Mack et al., Remarks on detecting high-energy deuterium–tritium fusion gamma rays using a gas Cherenkov detector, Radiat. Phys. Chem. 75, 551–556 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M. Haegi, E. Bittoni, A. Fubini, S. Rollet, Gamma diagnostics on charged fusion products in a thermonuclear plasma, Nucl. Fusion 35, 1625–1630 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    M. Planck, Über das Gesetz der Energieverteilung im Normalspektrum, Ann. d. Phys. 309, 553–563 (1901)ADSCrossRefGoogle Scholar
  7. 7.
    W. Wien, Ueber die Energievertheilung im Emissionsspectrum eines schwarzen Körpers, Ann. d. Phys. 294, 662–669 (1896)ADSCrossRefGoogle Scholar
  8. 8.
    G.H. Aston, The amount of energy emitted in the γ-ray form by radium E, Proc. Cambridge Philos. Soc. 23, 935–941 (1927)ADSCrossRefGoogle Scholar
  9. 9.
    B. Singh, S.S. Al-Dagazelli, Production of internal Bremsstrahlung accompanying β-decay from Sr90 and Y90, Phys. Rev. C 4, 2144 (1971)ADSCrossRefGoogle Scholar
  10. 10.
    G. Schatz, A. Weidinger, Nuclear Condensed Matter Physics (Wiley, New York, 1995)Google Scholar
  11. 11.
    E.M. Purcell, The lifetime of the 22S1 ∕ 2 state of hydrogen in an ionized atmosphere, Astrophys. J. 116, 457–462 (1952)ADSCrossRefGoogle Scholar
  12. 12.
    C. Eckart, The application of group theory to the quantum dynamics of monatomic systems, Rev. Mod. Phys. 2, 305–380 (1930)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    E.P. Wigner, Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen, Z. Physik 43, 624–652 (1927)ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    P. Bloomfield, Fourier Analysis of Time Series: An Introduction (Wiley, New York, 2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    C. Dey, A perturbed angular correlation spectrometer for materials science studies, Pramana J. Phys. 70, 835–846 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    M. Brüssler, H. Metzner, K.-D. Husemannn, H.J. Lewerenz, Phase identification in the Cu–In–S system by \(\gamma \mbox{ \textendash }\gamma \) perturbed angular correlations, Phys. Rev. B 38, 9268–9271 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    H. Metzner, M. Brüssler, K.-D. Husemann, H.J. Lewerenz, Characterization of phases and determination of phase relations in the Cu–In–S system by \(\gamma \mbox{ \textendash }\gamma \) perturbed angular correlations, Phys. Rev. B 44, 11614–11623 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    P.A. Cherenkov, Visible emission of clean liquids by action of γ radiation, Doklady Akad. Nauk SSSR 2, 451 (1934)Google Scholar
  19. 19.
    I.E. Tamm, I.M. Frank, Coherent radiation of a fast electron in a medium, Doklady Akad. Nauk. SSSR 14, 107–112 (1937)Google Scholar
  20. 20.
    A.P. Kobzev, The mechanism of Vavilov–Cherenkov radiation, Phys. Part. Nucl. 41, 452–470 (2010)CrossRefGoogle Scholar
  21. 21.
    E. Fermi, The ionization loss of energy in gases and condensed materials, Phys. Rev. 57, 485–493 (1940)ADSCrossRefGoogle Scholar
  22. 22.
    W. Knulst, M.J. van der Wiel, O.J. Luiten, J. Verhoeven, High-brightness, narrowband, and compact soft X-ray Cherenkov sources in the water window, Appl. Phys. Lett. 83, 4050–4052 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    C. Luo, M. Ibanescu, S.G. Johnson, J.D. Joannopoulos, Cherenkov radiation in photonic crystals, Science 299, 368–371 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    F.J. Garcia de Abajo, Optical excitations in electron microscopy, Rev. Mod. Phys. 82, 209–275 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    W. Galbraight, J.V. Jelly, Light pulses from the night sky associated with cosmic rays Nature 171, 349–350 (1953)Google Scholar
  26. 26.
    I. Arino et al., The HERA-B ring imaging Cherenkov counter, Nucl. Instrum. Meth. Phys. Res. A 516, 445–461 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    X. Artru, G.B. Yodh, G. Mennessier, Practical theory of the multilayered transition radiation detector, Phys. Rev. D 12, 1289–1306 (1975)ADSCrossRefGoogle Scholar
  28. 28.
    J.P. Blewett, Synchrotron radiation 1873–1947, Nucl. Instrum. Meth. Phys. Res. A 266, 1–9 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    R. Follath et al., Comissioning of the U49/2 PGM1 beamline, Synch. Rad. Instrum. CP 705, 348–351 (2004)ADSGoogle Scholar
  30. 30.
    R. Bonifacio, N. Narducci, C. Pellegrini, Collective instabilities and high-gain regime in a free electron laser, Opt. Commun. 50, 373–378 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    J. Andruszkow et al., First observation of self-amplified spontaneous emission in a free electron laser at 109 nm wavelength, Phys. Rev. Lett. 85, 3825–3829 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    R. Bonifacio, L. De Salvo, P. Picrini, N. Piovella, C. Pellegrini, Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise, Phys. Rev. Lett. 73, 70–73 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    S. Reiche, GENESIS 1.3: a fully 3D time dependent FEL simulation code, Nucl. Instrum. Meth. A 429, 243–249 (1999)Google Scholar
  34. 34.
    L.-H. Yu et al., High-gain harmonic-generation free-electron laser, Science 289, 932–934 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    S.V. Milton et al., Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser, Science 292, 2037–2041 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    V. Ayvazyan et al., Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime, Phys. Rev. Lett. 88, 104802 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    P. Emma et al., First lasing and operation of an angström-wavelenght free-electron laser, Nature Photon. 4, 641–647 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    J. Feldhaus, The FEL program at DESY: from first results at 100 nm wavelength to a True 1À X-ray Laser, Phys. Scripta T 110, 413–419 (2004)CrossRefGoogle Scholar
  39. 39.
    R.W. Schoenlein et al., Generation of femtosecond pulses of synchrotron radiation, Science 287, 2237–2240 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    P.M. Woodward, A method for calculating the field over a plane aperture required to produce a given polar diagram, J. Instrum. Electr. Eng. 93, 1554 (1946)Google Scholar
  41. 41.
    J.D. Lawson, Lasers and accelerators, IEEE Trans. Nucl. Sci. NS-26, 4217 (1979)Google Scholar
  42. 42.
    A.A. Zholents, M.S. Zolotorev, Femtosecond X-ray pulses of synchrotron radiation, Phys. Rev. Lett. 76, 912–915 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    N. Yamamoto et al., Study of the coherent terahertz radiation by laser bunch slicing at UVSOR-II electron storage ring, Proc. IPAC’ 10, 2570–2572 (2010)Google Scholar
  44. 44.
    R. Bingham, L.O. Silva, J.T. Mendonca, P.K. Shukla, W.B. Mori, A. Serbeto, Neutrino plasma coupling in dense astrophysical plasmas, Plasma Phys. Control. Fusion 46, B327–B334 (2004)CrossRefGoogle Scholar
  45. 45.
    G.R. Neil et al., Production of high power femtosecond terahertz radiation, Nucl. Instrum. Meth. Phys. Res. A 507, 537–540 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Helmholtz Zentrum Berlin for Materials and EnergyInstitut für Solare BrennstoffeBerlinGermany

Personalised recommendations