On the Origin of Light

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 157)

Abstract

This chapter treats fundamentals of photon generation, giving an overview of physica principles of photon generation. The considered energies range from ultrahard radiation to the visible and (far) infrared terahertz regime.

Keywords

Enantiomeric Excess Magnetic Circular Dichroism Photon Generation Circumstellar Envelope Purcell Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Nifenecker, J.A. Piston, High energy photon production in nuclear reactions, Ann. Rev. Nucl. Part. Sci. 40, 113–1143 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    M. Tardocchi et al., Gamma ray spectroscopy at high energy and high time resolution at JET, Rev. Sci. Instrum. 79, 10E524 (2008)Google Scholar
  3. 3.
    C.F.v. Weizsäcker, Ausstrahlung bei Stößen sehr schneller Elektronen, Z. Phys. 88, 612–625 (1934)Google Scholar
  4. 4.
    E.J. Williams, Correlation of certain collision problems with radiation theory, Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 13(4), (1935)Google Scholar
  5. 5.
    H.A. Kramers, On the theory of X-ray absorption and of the continuous X-ray spectrum, Philos. Mag. 46, 836–871 (1923)Google Scholar
  6. 6.
    J. Larmor, On a dynamical theory of the electric and luminiferous medium, Philos. Transact. Roy. Soc. 190, 205–300 (1897)ADSMATHCrossRefGoogle Scholar
  7. 7.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1980)Google Scholar
  8. 8.
    H.A. Bethe, W. Heitler, On the stopping of fast particles and on the creation of positive electrons, Proc. Roy. Soc. London A 146, 83–112 (1934)ADSCrossRefGoogle Scholar
  9. 9.
    H. Bethe, Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. d. Physik 397, 325–400 (1930)ADSCrossRefGoogle Scholar
  10. 10.
    M.S. Zolotorev, K.T. McDonald, Classical radiation processes in the Weizsäcker-Williams approximation (Aug.25, 1999), physics/0003096, http://puhep1.princeton.edu/~mcdonald/accel/weizsacker.pdf
  11. 11.
    M.T. Herd, J.F. Lawler, Infrared continuum radiation from metal halide high intensity discharge lamps, J. Phys. D: Appl. Phys. 40, 3386–3395 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    D. Zwanziger, Energy and momentum spectral function of coherent Bremsstrahlung radiation, Phys. Rev. D 20, 2001–2026 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    V.B. Gavrikov, V.P. Likhachev, J.D.T. Arruda-Neto, Coherent x radiation by relativistic electrons in crystals, Phys. Rev. A 68, 024901 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    L. Criegee, G. Lutz, H.D. Schulz, U. Timm, W. Zimmermann, Polarization measurement of the 6-GeV coherent Bremsstrahlung from the Hamburg electron synchrotron, Phys. Rev. Lett. 16, 1031–1033 (1966)ADSCrossRefGoogle Scholar
  15. 15.
    F.J. Garcia de Abajo, A.G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M.O. Wolf, P.M. Echenique, Cherenkov effect as probe of photonic nanostructures, Phys. Rev. Lett. 91, 143902 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Korol, A.G. Lyalin, O.I. Obolenskii, A.V. Solovyov, The role of the polarization mechanism of radiation of atoms over a broad frequency range, Sov. Phys. JETP 87, 251–259 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    N.N. Nasonov, V.A. Nasonova, I.G. Popov, Polarization Bremsstrahlung from relativistic electrons moving in a small-grained medium, Phys. Atom. Nucl. 64, 1037–1041 (2001)CrossRefGoogle Scholar
  18. 18.
    S.V. Blazhevich, A.S. Chepurnov, V.K. Grishin, B. Ishkhanov, N. Nasonov, V. Petukhov, V. Shvedunov, Polarization Bremsstrahlung of relativistic electrons in aluminium, Phys. Lett. A 254, 230–232 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Sal Portillo, C.A. Charles, Absolute doubly differential cross sections for electron Bremsstrahlung from rare gas atoms at 28 and 50 keV, Phys. Rev. Lett. 91, 173201 (2003)Google Scholar
  20. 20.
    R. Loudon, The Quantum Theory of Light, 3rd edn. (Oxford University Press, 1973), pp. 241Google Scholar
  21. 21.
    P.A.M. Dirac, The quantum theory of emission and absorption of radiation, Proc. Roy. Soc. A 114, 243–265 (1927)ADSMATHCrossRefGoogle Scholar
  22. 22.
    P.A.M. Dirac, The quantum theory of the electron, Proc. Roy. Soc. A 117, 610–624 (1928)ADSMATHCrossRefGoogle Scholar
  23. 23.
    R.P. Feynman, Space time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20, 367–387 (1948)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    D.J. Struik, A Source Book in Mathematics, 1200–1800 (Harvard University Press, Cambridge, MA, 1969), pp. 391–399MATHGoogle Scholar
  25. 25.
    J. Schwinger, Quantum electrodynamics. I. A covariant formulation, Phys. Rev. 74, 1439–1461 (1948)Google Scholar
  26. 26.
    J. Schwinger, Quantum electrodynamics. II. Vacuum polarization and self energy, Phys. Rev. 75, 651–679 (1949)Google Scholar
  27. 27.
    W.E. Lamb Jr., R.C. Retherford, Fine structure of the hydrogen atom by a microwave method, Phys. Rev. 72, 241–243 (1947)ADSCrossRefGoogle Scholar
  28. 28.
    B.N. Taylor, The determination of best values of the fundamental physical constants, Philos. Transact. Roy. Soc. A 363, 2105–2122 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    C.T. Chantler, Discrepancies in quantum electro-dynamics, Radiat. Phys. Chem. 71, 611–617 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    F. Wilczek, Quantum chromodynamics: the modern theory of the strong interaction, Ann. Rev. Nucl. Part. Sci. 32, 177–209 (1982)ADSCrossRefGoogle Scholar
  31. 31.
    H.D. Politzer, Reliable perturbative results for strong interactions, Phys. Rev. Lett. 30, 1346–1349 (1973)ADSCrossRefGoogle Scholar
  32. 32.
    D.J. Gross, F. Wilczek, Reliable perturbative results for strong interactions, Phys. Rev. D 8, 3633–3652 (1973)ADSCrossRefGoogle Scholar
  33. 33.
    E.M. Purcell, Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  34. 34.
    J.L. Bada, A. Lazcano, Prebiotic soup-revisiting the Miller experiment, Science 300, 745–746 (2003)CrossRefGoogle Scholar
  35. 35.
    B. Korzeniewski, Cybernetic formulation of the definition of life, J. Theor. Biol. 209, 275–286 (2001)CrossRefGoogle Scholar
  36. 36.
    D.E. Koshland Jr., The seven pillars of life, Science 295, 2215–2216 (2002)CrossRefGoogle Scholar
  37. 37.
    Y.N. Zhuravlev, V.A. Avetisov, The definition of life in the context of its origin, Biogeosciences 3, 281–291 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    J.W. Huntley, S.-H. Xiao, M. Kowalewski, 1.3 Billion years of acritarch history: An empirical morphospace approach, Precambrian Res. 144, 52–68 (2006)Google Scholar
  39. 39.
    P.A. Underhill, T. Kivisild, Use of Y chromosome and mitochondrial DNA population structure in tracing human migrations, Ann. Rev. Genet. 41, 539–564 (2007)CrossRefGoogle Scholar
  40. 40.
    P.A. Mayewski et al., Homocene climate variability, Quaternary Res. 62, 243–255 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    D.A. Hodell, J.H. Curtis, M. Brenner, Possible role of climate in the collapse of Classic Maya civilization, Nature 375, 391–394 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    W. Thomson (Lord Kelvin) Presidential Address to the British Association for the Advancement of Science, Nature 4, 262 (1871)Google Scholar
  43. 43.
    F. Hoyle, N.C. Wickramasinghe, Astronomical Origins of Life (Kluwer, Dordrecht, 2000)CrossRefGoogle Scholar
  44. 44.
    The Times, London, UK, August 19, 2009Google Scholar
  45. 45.
    ESO News, 22.04. 2007Google Scholar
  46. 46.
    V. Goldanskii, M.D. Frank-Kamenetskii, I.M. Barkalov, Quantum low temperature limit of a chemical reaction rate, Science 182, 1344–1345 (1973)ADSCrossRefGoogle Scholar
  47. 47.
    S.L. Miller, Production of amino acids under possible primitive earth conditions, Science 117, 528–529 (1953)ADSCrossRefGoogle Scholar
  48. 48.
    D. Ring, Y. Wolman, N. Friedman, S.L. Miller, Prebiotic synthesis of hydrophobic and protein amino acids, Proc. Natl. Acad. Sci. USA 69, 765–768 (1972)ADSCrossRefGoogle Scholar
  49. 49.
    H.J. Morowitz, Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis (Yale University Press, New Haven, CT, 1992)Google Scholar
  50. 50.
    G. Wächtershäuser, Before enzymes and templates: theory of surface metabolism, Microbiol. Rev. 52, 452–484 (1988)Google Scholar
  51. 51.
    W. Gilbert, The RNA world, Nature 319, 618–619 (1986)ADSCrossRefGoogle Scholar
  52. 52.
    G.F. Joyce, RNA evolution and the origins of life, Nature 338, 217–224 (1989)ADSCrossRefGoogle Scholar
  53. 53.
    M.W. Powner, B. Gerland, J.D. Sutherland, Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions, Nature 459, 239–242 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    J.J. Keady, S.T. Ridgway, The IRC+10216 circumstellar envelope-III. Infrared molecular line profiles, Astrophys. J. 406, 199–214 (1993)Google Scholar
  55. 55.
    V. Goldanskii, M.D. Frank-Kamenetskii, I.M. Barkalov, Quantum low temperature limit of a chemical reaction rate, Science 182, 1344–1345 (1973)ADSCrossRefGoogle Scholar
  56. 56.
    A.I. Oparin, The Origin of Life (Macmillan Publications, New York, 1938)Google Scholar
  57. 57.
    A. Jablonski, Efficiency of anti-Stokes fluorescence in dyes, Nature 131, 838 (1933)ADSCrossRefGoogle Scholar
  58. 58.
    J.P. Pinto, G.R. Gladstone, Y.L. Yung, Photochemical production of formaldehyde in earth’s primitive atmosphere, Science 210, 183–184 (1980)ADSCrossRefGoogle Scholar
  59. 59.
    G.M. Munoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg, Amino acids from ultraviolet irradiation of interstellar ice analogues, Nature 416, 403–406 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    S. Pilling, D.P.P. Angrade, A.C. Neto, R. Rittner, A. Naves de Brito, DNA nucleobase synthesis at Titan atmosphere analog by soft X-rays, J. Phys. Chem. A 113, 11161–11166 (2009)CrossRefGoogle Scholar
  61. 61.
    L. Pasteur, Researches on the Molecular Asymmetry of Natural Organic Products (vol. 14, 1905), pp. 1–46 (English transl. of French original publ. by Alembic Club Reprints)Google Scholar
  62. 62.
    R.S. Cahn, C.K. Ingold, V. Prelog, Specification of molecular chirality, Angew. Chem. Internat. Ed. 5, 385–415 (1966)CrossRefGoogle Scholar
  63. 63.
    M.H. Engel, S.A. Macko, Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite, Nature 389, 265–268 (1997)ADSCrossRefGoogle Scholar
  64. 64.
    S. Pizzarello, J.R. Cronin, Alanine enantiomers in the Murchison meteorite, Nature 394, 235 (1998)ADSCrossRefGoogle Scholar
  65. 65.
    T. Kawasaki, M. Shimizu, D. Nishiyama, M. Ito, H. Ozawa, K. Soai, Asymmetric autocatalysis induced by meteoritic amino acids with hydrogen isotope chirality, Chem. Commun. 29, 4396–4398 (2009)CrossRefGoogle Scholar
  66. 66.
    R. Breslow, Z.-L. Cheng, On the origin of terrestrial homochirality for nucleosides and amino acids, Proc. Nat. Acad. Sci. USA 106, 9144–9146 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    G. Wagnière, A. Meier, The influence of a static magnetic field on the absorption coefficient of a chiral molecule, Chem. Phys. Lett. 93, 78–81 (1982)ADSCrossRefGoogle Scholar
  68. 68.
    G.J.L.A. Rikken, E. Raupach, Enantioselective magnetochiral photochemistry, Nature 405, 932–935 (2000)ADSCrossRefGoogle Scholar
  69. 69.
    G.J.L.A. Rikken, E. Raupach, Observation of magneochiral dichroism, Nature 390, 493–494 (1997)ADSCrossRefGoogle Scholar
  70. 70.
    J. Bailey, A. Chrysostomou, J.H. Hough, T.M. Gledhill, A. McCall, S. Clark, F. Ménard, M. Tamura, Circular polarization in star-formation regions: implications for biomolecular homochirality, Science 281, 672–674 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Helmholtz Zentrum Berlin for Materials and EnergyInstitut für Solare BrennstoffeBerlinGermany

Personalised recommendations