Forcasting Evolving Time Series of Energy Demand and Supply

  • Lars Dannecker
  • Matthias Böhm
  • Wolfgang Lehner
  • Gregor Hackenbroich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6909)

Abstract

Real-time balancing of energy demand and supply requires accurate and efficient forecasting in order to take future consumption and production into account. These balancing capabilities are reasoned by emerging energy market developments, which also pose new challenges to forecasting in the energy domain not addressed so far: First, real-time balancing requires accurate forecasts at any point in time. Second, the hierarchical market organization motivates forecasting in a distributed system environment. In this paper, we present an approach that adapts forecasting to the hierarchical organization of today’s energy markets. Furthermore, we introduce a forecasting framework, which allows efficient forecasting and forecast model maintenance of time series that evolve due to continuous streams of measurements. This framework includes model evaluation and adaptation techniques that enhance the model maintenance process by exploiting context knowledge from previous model adaptations. With this approach (1) more accurate forecasts can be produced within the same time budget, or (2) forecasts with similar accuracy can be produced in less time.

Keywords

Forecasting Energy Hierarchy Parameter Estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belhomme, R., Asua, R.C.R.D., Valtorta, G., Paice, A., Bouffard, F., Rooth, R., Losi, A.: Address - active demand for the smart grids of the future. In: CIRED Seminar 2008: SmartGrids for Distribution (2010)Google Scholar
  2. 2.
    Project, M.: (2011), http://www.miracle-project.eu
  3. 3.
    MeRegio Project (2011), http://www.meregio.de/en/
  4. 4.
    Hyndman, R.J.: Another look at forecast-accuracy metrics for intermittent demand. Foresight: The International Journal of Applied Forecasting 4, 43–46 (2006)Google Scholar
  5. 5.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. John Wiley & Sons Inc., Chichester (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Management Science, 324–342 (April 1960)Google Scholar
  7. 7.
    Bunnoon, P., Chalermyanont, K., Limsakul, C.: A computing model of artificial intelligent approaches to mid-term load forecasting: a state-of-the-art- survey for the researcher. Int. Journal of Engineering and Technology 2(1), 94–100 (2010)CrossRefGoogle Scholar
  8. 8.
    Challa, B., Challa, S., Chakravorty, R., Deshpande, S., Sharma, D.: A novel approach for electrical load forecasting using distributed sensor networks. In: Proceedings of the Third ICISIP, pp. 189–194 (2005)Google Scholar
  9. 9.
    Blom, H., Bar-Shalom, Y.: The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE Transaction on Automatic Control 33, 780–783 (1988)CrossRefMATHGoogle Scholar
  10. 10.
    Sohn, S.Y., Lim, M.: Hierarchical forecasting based on ar-garch model in a coherent structure. European Journal of Operational Research 176, 1033–1040 (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Hyndman, R.J., Ahmed, R.A., Athanasopoulos, G.: Optimal combination forecasts for hierarchical time series. Technical report, Monash University (2007)Google Scholar
  12. 12.
    Taylor, J.W.: Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research 204, 139–152 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Ramanathan, R., Engle, R., Granger, C.W., Vahid-Araghi, F., Brace, C.: Short-run forecasts of electricity loads and peaks. International Journal of Forecasting 13, 161–174 (1997)CrossRefGoogle Scholar
  14. 14.
    Cottet, R., Smith, M.: Bayesian modeling and forecasting of intraday electricity load. Journal of the American Statistical Association 98, 839–849 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dordonnat, V., Koopman, S., Ooms, M., Dessertaine, A., Collet, J.: An hourly periodic state space model for modelling french national electricity load. International Journal of Forecasting 24(4), 566–587 (2008)CrossRefGoogle Scholar
  16. 16.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science New Series 220(4598), 671–680 (1983)MathSciNetMATHGoogle Scholar
  17. 17.
    Fogel, D.B.: Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. IEEE Press, Los Alamitos (2000)MATHGoogle Scholar
  18. 18.
    Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. Journal of the ACM 8, 212–229 (1961)CrossRefMATHGoogle Scholar
  19. 19.
    Nelder, J., Mead, R.: A simplex method for function minimization. The Computer Journal 13, 308–313 (1965)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    nationalgrid: nationalgrid UK - Metered half-hourly electricity demands (2010), http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lars Dannecker
    • 1
  • Matthias Böhm
    • 2
  • Wolfgang Lehner
    • 2
  • Gregor Hackenbroich
    • 1
  1. 1.SAP Research DresdenDresdenGermany
  2. 2.Database Technology GroupTechnische Universität DresdenDresdenGermany

Personalised recommendations