Resource Scheduling Methods for Query Optimization in Data Grid Systems

  • Igor Epimakhov
  • Abdelkader Hameurlain
  • Tharam Dillon
  • Franck Morvan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6909)


Resource allocation (RA) is one of the most important stages of distributed query processing in Data Grid systems. Recently, a number of papers that propose different methods for RA were published. To deal with specific characteristics of the data grid systems, such as dynamicity, heterogeneity and large-scale, many studies extend classic methods from distributed and parallel databases domains. Others invite fundamentally different methods based on incentives for autonomous nodes. The present study provides a brief description, qualitative comparison and performance evaluation of the most interesting approaches (extended classic and incentive-based) for RA. Both approaches are promising and appropriate for successful data grid systems.


Data grid systems resource allocation distributed query processing and optimization incentive-based scheduling extended classic scheduling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Carvalho Costa, R.L., Furtado, P.: Scheduling in Grid Databases. In: 22nd Int. Conference on Advanced Information Networking and Applications – Workshops (2008)Google Scholar
  2. 2.
    de Carvalho Costa, R.L., Furtado, P.: Runtime Estimations, Reputation and Elections for Top Performing Distributed Query Scheduling. In: 9th IEEE/ACM Int. Symposium on Cluster Computing and the Grid (2009)Google Scholar
  3. 3.
    Chen, H., Wu, Z.: DartGrid III: A Semantic Grid Toolkit for Data Integration. In: Proceedings of the First Int. Conference on Semantics, Knowledge, and Grid, SKG 2005 (2005)Google Scholar
  4. 4.
    Chen, H., Wu, Z., Mao, Y., Zheng, G.: DartGrid: a semantic infrastructure for building database Grid applications. Concurrency Computat.: Pract. Exper. 18, 1811–1828 (2006)CrossRefGoogle Scholar
  5. 5.
    Gounaris, A., Sakellariou, R., Paton, N.W., Fernandes, A.A.A.: Resource Scheduling for Parallel Query Processing on Computational Grids. In: GRID, pp. 396–401 (2004)Google Scholar
  6. 6.
    Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A.A.A.: Adaptive Query Processing and the Grid: Opportunities and Challenges. In: DEXA Workshops, pp. 506–510 (2004)Google Scholar
  7. 7.
    Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A.A.A., Smith, J., Watson, P.: Practical Adaptation to Changing Resources in Grid Query Processing. In: ICDE, p. 165 (2006)Google Scholar
  8. 8.
    Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A.A.A.: Modular Adaptive Query Processing for Sevice-Based Grids. CoreGRID Tech. Report Number TR-0076 (2007)Google Scholar
  9. 9.
    Hameurlain, A., Morvan, F., Samad, M.E.: Large scale data management in grid systems: a survey. In: IEEE International Conference on Information and Communication Technologies: from Theory to Applications (ICTTA), pp. 1–6 (2008)Google Scholar
  10. 10.
    Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on nonidentical processors. Journal of Association of Comp. Machine 24(2), 280–289 (1977)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Izakian, H., Abraham, A., Snásel, V.: Comparison of Heuristics for Scheduling Independent Tasks on Heterogeneous Distributed Environments. CSO 1, 8–12 (2009)Google Scholar
  12. 12.
    Izakian, H., Abraham, A., Tork Ladani, B.: An auction method for resource allocation in computational grids. Future Generation Computer Systems 26, 228–235 (2010)CrossRefGoogle Scholar
  13. 13.
    Jiang, C., Wang, C., Liu, X., Zhao, Y.: A Survey of Job Scheduling in Grids. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 419–427. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Qin, X.: Design and analysis of a load balancing strategy in Data Grids. Future Generation Computer Systems 23, 132–137 (2007)CrossRefGoogle Scholar
  15. 15.
    Liu, S., Karimi, H.A.: Grid query optimizer to improve query processing in grids. Future Generation Computer Systems 24, 342–353 (2008)CrossRefGoogle Scholar
  16. 16.
    Da Silva, V.F.V., Dutra, M.L., Porto, F., Schulze, B., Barbosa, A.C., de Oliveira, J.C.: An adaptive parallel query processing middleware for the Grid. Concurrency Computat.: Pract. Exper 18, 621–634 (2006)CrossRefGoogle Scholar
  17. 17.
    Soe, K.M., New, A.A., Aung, T.N., Naing, T.T., Thein, N.L.: Efficient Scheduling of Resources for Parallel Query Processing on Grid-based Architecture. In: APSITT (2005)Google Scholar
  18. 18.
    Stonebraker, M., Aoki, P.M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., Staelin, C., Yu, A.: Mariposa: a wide-area distributed database system. The VLDB Journal 5, 48–63 (1996)CrossRefGoogle Scholar
  19. 19.
    Venugopal, S., Buyya, R.: An SCP-based heuristic approach for scheduling distributed data-intensive applications on global grids. J. Parallel Distrib. Comput. 68, 471–487 (2008)CrossRefMATHGoogle Scholar
  20. 20.
    Wu, Z., Chen, H., Changhuang, C., Zheng, G., Xu, J.: DartGrid: Semantic-Based Database Grid. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3036, pp. 59–66. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Xiao, L., Zhu, Y., Ni, L.M., Xu, Z.: Incentive-Based Scheduling for Market-Like Computational Grids. IEEE Transactions on parallel and distributed systems 19(7) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Igor Epimakhov
    • 1
  • Abdelkader Hameurlain
    • 1
  • Tharam Dillon
    • 2
  • Franck Morvan
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouse IRITPaul Sabatier UniversityToulouseFrance
  2. 2.DEBII InstituteCurtin UniversityPerthAustralia

Personalised recommendations