Smoothed Performance Guarantees for Local Search

  • Tobias Brunsch
  • Heiko Röglin
  • Cyriel Rutten
  • Tjark Vredeveld
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)

Abstract

We study popular local search and greedy algorithms for scheduling. The performance guarantee of these algorithms is well understood, but the worst-case lower bounds seem somewhat contrived and it is questionable if they arise in practical applications. To find out how robust these bounds are, we study the algorithms in the framework of smoothed analysis, in which instances are subject to some degree of random noise.

While the lower bounds for all scheduling variants with restricted machines are rather robust, we find out that the bounds are fragile for unrestricted machines. In particular, we show that the smoothed performance guarantee of the jump and the lex-jump algorithm are (in contrast to the worst case) independent of the number of machines. They are Θ(φ) and Θ(logφ), respectively, where 1/φ is a parameter measuring the magnitude of the perturbation. The latter immediately implies that also the smoothed price of anarchy is Θ(logφ) for routing games on parallel links. Additionally we show that for unrestricted machines also the greedy list scheduling algorithm has an approximation guarantee of Θ(logφ).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angel, E.: A survey of approximation results for local search algorithms. In: Bampis, E., Jansen, K., Kenyon, C. (eds.) Efficient Approximation and Online Algorithms. LNCS, vol. 3484, pp. 30–73. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Aspnes, J., Azar, Y., Fiat, A., Plotkin, S.A., Waarts, O.: On-line routing of virtual circuits with applications to load balancing and machine scheduling. Journal of the ACM 44(3), 486–504 (1997)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria. Theoretical Computer Science 361, 200–209 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Schäfer, G., Vredeveld, T.: Average case and smoothed competitive analysis for the multi-level feedback algorithm. Mathematics of Operations Research 31(3), 85–108 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. Journal of Computer and System Sciences 69(3), 306–329 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brunsch, T., Röglin, H., Rutten, C., Vredeveld, T.: Smoothed Performance Guarantees for Local Search. ArXiv e-prints (May 2011), http://arxiv.org/abs/1105.2686
  7. 7.
    Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM Journal on Computing 9, 91–103 (1980)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. Transactions on Algorithms ACM 3(1) (2007)Google Scholar
  9. 9.
    Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-opt algorithm for the TSP. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1295–1304 (2007)Google Scholar
  10. 10.
    Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT 19, 312–320 (1979)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractibility: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)MATHGoogle Scholar
  12. 12.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287–326 (1979)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for machine scheduling on uniform processors: using the dual approximation approach. SIAM Journal on Computing 17, 539–551 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hoefer, M., Souza, A.: Tradeoffs and average-case equilibria in selfish routing. ACM Transactions on Computation Theory 2(1), article 2 (2010)Google Scholar
  15. 15.
    Leung, J.Y.T., Li, C.L.: Scheduling with processing set restrictions: A survey. International Journal of Production Economics 116, 251–262 (2008)CrossRefGoogle Scholar
  16. 16.
    Michiels, W.P.A.J., Aarts, E.H.L., Korst, J.H.M.: Theoretical Aspects of Local Search. Springer, Heidelberg (2007)MATHGoogle Scholar
  17. 17.
    Recalde, D., Rutten, C., Schuurman, P., Vredeveld, T.: Local search performance guarantees for restricted related parallel machine scheduling. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 108–119. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Schäfer, G., Sivadasan, N.: Topology matters: Smoothed competitiveness of metrical task systems. Theoretical Computer Science 341(1-3), 3–14 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multiprocessor scheduling. Informs Journal on Computing 19(1), 52–63 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Spielman, D.A., Teng, S.H.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Communications of the ACM 52(10), 76–84 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tobias Brunsch
    • 1
  • Heiko Röglin
    • 1
  • Cyriel Rutten
    • 2
  • Tjark Vredeveld
    • 2
  1. 1.Dept. of Computer ScienceUniversity of BonnGermany
  2. 2.Dept. of Quantitative EconomicsMaastricht UniversityThe Netherlands

Personalised recommendations