Cuckoo Hashing with Pages

  • Martin Dietzfelbinger
  • Michael Mitzenmacher
  • Michael Rink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)


A downside of cuckoo hashing is that it requires lookups to multiple locations, making it a less compelling alternative when lookups are expensive. One such setting is when memory is arranged in large pages, and the major cost is the number of page accesses. We propose the study of cuckoo hashing with pages, advocating approaches where each key has several possible locations, or cells, on a single page, and additional choices on a second backup page. We show experimentally that with k cell choices on one page and a single backup cell choice, one can achieve nearly the same loads as when each key has k + 1 random cells to choose from, with most lookups requiring just one page access, even when keys are placed online using a simple algorithm. While our results are currently experimental, they suggest several interesting new open theoretical questions for cuckoo hashing with pages.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Upper Saddle River (1993)zbMATHGoogle Scholar
  2. 2.
    Alcantara, D.A., Sharf, A., Abbasinejad, F., Sengupta, S., Mitzenmacher, M., Owens, J.D., Amenta, N.: Real-time parallel hashing on the GPU. ACM Trans. Graph. 28(5) (2009)Google Scholar
  3. 3.
    Arbitman, Y., Naor, M., Segev, G.: Backyard Cuckoo Hashing: Constant Worst-Case Operations with a Succinct Representation. In: Proc. 51st FOCS, pp. 787–796. IEEE, Los Alamitos (2010)Google Scholar
  4. 4.
    Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun. ACM 13(7), 422–426 (1970)CrossRefzbMATHGoogle Scholar
  5. 5.
    Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: A survey. Internet Mathematics 1(4), 485–509 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink, M.: Tight Thresholds for Cuckoo Hashing via XORSAT. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 213–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Dietzfelbinger, M., Mitzenmacher, M., Rink, M.: Cuckoo Hashing with Pages. CoRR abs/1104.5111 (2011)Google Scholar
  8. 8.
    Erlingsson, Ú., Manasse, M., McSherry, F.: A cool and practical alternative to traditional hash tables. In: Proc. 7th WDAS (2006)Google Scholar
  9. 9.
    Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space Efficient Hash Tables with Worst Case Constant Access Time. Theory Comput. Syst. 38(2), 229–248 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fountoulakis, N., Khosla, M., Panagioutou, K.: The Multiple-orientability Thresholds for Random Hypergraphs. In: Proc. 22nd SODA, pp. 1222–1236. SIAM, Philadelphia (2011)Google Scholar
  11. 11.
    Fountoulakis, N., Panagiotou, K.: Orientability of Random Hypergraphs and the Power of Multiple Choices. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. ICALP, pp. 348–359. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Frieze, A.M., Melsted, P.: Maximum Matchings in Random Bipartite Graphs and the Space Utilization of Cuckoo Hashtables. CoRR abs/0910.5535 (2009)Google Scholar
  13. 13.
    Gao, P., Wormald, N.C.: Load balancing and orientability thresholds for random hypergraphs. In: Proc. 42nd STOC, pp. 97–104. ACM, New York (2010)Google Scholar
  14. 14.
    Gough, B. (ed.): GNU Scientific Library Reference Manual, 3rd edn. Network Theory Ltd (2009),
  15. 15.
    Manber, U., Wu, S.: An Algorithm for Approximate Membership checking with Application to Password Security. Inf. Process. Lett. 50(4), 191–197 (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ross, K.A.: Efficient Hash Probes on Modern Processors. In: Proc. 23rd ICDE, pp. 1297–1301. IEEE, Los Alamitos (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Dietzfelbinger
    • 1
  • Michael Mitzenmacher
    • 2
  • Michael Rink
    • 1
  1. 1.Fakultät für Informatik und AutomatisierungTechnische Universität IlmenauGermany
  2. 2.School of Engineering and Applied SciencesHarvard UniversityUSA

Personalised recommendations