Mixed-Criticality Scheduling of Sporadic Task Systems

  • Sanjoy K. Baruah
  • Vincenzo Bonifaci
  • Gianlorenzo D’Angelo
  • Alberto Marchetti-Spaccamela
  • Suzanne van der Ster
  • Leen Stougie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)


We consider the scheduling of mixed-criticality task systems, that is, systems where each task to be scheduled has multiple levels of worst-case execution time estimates. We design a scheduling algorithm, EDF-VD, whose effectiveness we analyze using the processor speedup metric: we show that any 2-level task system that is schedulable on a unit-speed processor is correctly scheduled by EDF-VD using speed φ; here φ < 1.619 is the golden ratio. We also show how to generalize the algorithm to K > 2 criticality levels.We finally consider 2-level instances on m identical machines. We prove speedup bounds for scheduling an independent collection of jobs and for the partitioned scheduling of a 2-level task system.


Single Machine Task System Golden Ratio Sporadic Task Sporadic Task System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barhorst, J., Belote, T., Binns, P., Hoffman, J., Paunicka, J., Sarathy, P., Stanfill, J.S.P., Stuart, D., Urzi, R.: White paper: A research agenda for mixed-criticality systems (2009),
  2. 2.
    Baruah, S.K., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., Megow, N., Stougie, L.: Scheduling real-time mixed-criticality jobs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 90–101. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Baruah, S.K., Goossens, J.: Scheduling real-time tasks: Algorithms and complexity. In: Leung, J.Y.T. (ed.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis, ch. 28, CRC Press, Boca Raton (2003)Google Scholar
  4. 4.
    Baruah, S.K., Li, H., Stougie, L.: Towards the design of certifiable mixed-criticality systems. In: Proc. 16th IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 13–22. IEEE, Los Alamitos (2010)Google Scholar
  5. 5.
    Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM Journal on Computing 33(4), 837–851 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of the ACM 47(4), 617–643 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Li, H., Baruah, S.K.: An algorithm for scheduling certifiable mixed-criticality sporadic task systems. In: Proc. 16th IEEE Real-Time Systems Symp., pp. 183–192. IEEE, Los Alamitos (2010)Google Scholar
  8. 8.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM 20(1), 46–61 (1973)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sanjoy K. Baruah
    • 1
  • Vincenzo Bonifaci
    • 2
  • Gianlorenzo D’Angelo
    • 3
  • Alberto Marchetti-Spaccamela
    • 4
  • Suzanne van der Ster
    • 5
  • Leen Stougie
    • 5
    • 6
  1. 1.University of North Carolina at Chapel HillUSA
  2. 2.Max-Planck Institut für InformatikSaarbrückenGermany
  3. 3.University of L’AquilaItaly
  4. 4.Sapienza Università di RomaRomeItaly
  5. 5.Vrije Universiteit AmsterdamThe Netherlands
  6. 6.CWI, AmsterdamThe Netherlands

Personalised recommendations