On the Configuration-LP for Scheduling on Unrelated Machines

  • José Verschae
  • Andreas Wiese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)

Abstract

Closing the approximability gap between 3/2 and 2 for the minimum makespan problem on unrelated machines is one of the most important open questions in scheduling. Almost all known approximation algorithms for the problem are based on linear programs (LPs). In this paper, we identify a surprisingly simple class of instances which constitute the core difficulty for LPs: the so far hardly studied unrelated graph balancing case in which each job can be assigned to at most two machines. We prove that already for this basic setting the strongest known LP-formulation – the configuration-LP – has an integrality gap of 2, matching the best known approximation factor for the general case. This points towards an interesting direction of future research. The result is shown by a sophisticated construction of instances, based on deep insights on two key weaknesses of the configuration-LP.

For the objective of maximizing the minimum machine load in the unrelated graph balancing setting we present an elegant purely combinatorial 2-approximation algorithm with only quadratic running time. Our algorithm uses a novel preprocessing routine that estimates the optimal value as good as the configuration-LP. This improves on the computationally costly LP-based (2 + ε)-approximation algorithm by Chakrabarty et al. [6].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asadpour, A., Feige, U., Saberi, A.: Santa claus meets hypergraph matchings. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 10–20. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Asadpour, A., Feige, U., Saberi, A.: Santa claus meets hypergraph matchings. Technical report, Standford University (2009), Available for download at http://www.stanford.edu/~asadpour/publication.htm
  3. 3.
    Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation of indivisible goods. In: Proceedings of the 39th annual ACM symposium on Theory of computing (STOC 2007), pp. 114–121 (2007)Google Scholar
  4. 4.
    Bansal, N., Sviridenko, M.: The santa claus problem. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC 2006), pp. 31–40 (2006)Google Scholar
  5. 5.
    Bateni, M., Charikar, M., Guruswami, V.: Maxmin allocation via degree lower-bounded arborescences. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC 2009), pp. 543–552 (2009)Google Scholar
  6. 6.
    Chakrabarty, D., Chuzhoy, J., Khanna, S.: On allocating goods to maximize fairness. In: Proceedings of the 50th Annual Symposium on Foundations of Computer Science (FOCS 2009), pp. 107–116 (2009)Google Scholar
  7. 7.
    Correa, J.R., Skutella, M., Verschae, J.: The power of preemption on unrelated machines and applications to scheduling orders. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 84–97. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: a special case of scheduling unrelated parallel machines. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 483–490 (2008)Google Scholar
  9. 9.
    Eisenbrand, F., Palvoelgyi, D., Rothvoss, T.: Bin packing via discrepancy of permutations. In: Proceedings of the 22th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 476–481 (2011)Google Scholar
  10. 10.
    Feige, U.: On allocations that maximize fairness. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 287–293 (2008)Google Scholar
  11. 11.
    Gairing, M., Monien, B., Woclaw, A.: A faster combinatorial approximation algorithm for scheduling unrelated parallel machines. Theoretical Computer Science 380, 87–99 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the lovasz local lemma. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 397–406 (2010)Google Scholar
  13. 13.
    Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 1982), pp. 312–320 (1982)Google Scholar
  14. 14.
    Lawler, E.L., Labetoulle, J.: On preemptive scheduling of unrelated parallel processors by linear programming. Journal of the ACM 25, 612–619 (1978)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lee, K., Leung, J.Y., Pinedo, M.L.: A note on graph balancing problems with restrictions. Information Processing Letters 110, 24–29 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Leung, J.Y., Li, C.: Scheduling with processing set restrictions: A survey. International Journal of Production Economics 116, 251–262 (2008)CrossRefGoogle Scholar
  18. 18.
    Lin, Y., Li, W.: Parallel machine scheduling of machine-dependent jobs with unit-length. European Journal of Operational Research 156, 261–266 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Scheithauer, G., Terno, J.: Theoretical investigations on the modified integer round-up property for the one-dimensional cutting stock problem. Operations Research Letters 20, 93–100 (1997)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for machine scheduling: Ten open problems. Journal of Scheduling 2, 203–213 (1999)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Shchepin, E.V., Vakhania, N.: An optimal rounding gives a better approximation for scheduling unrelated machines. Operations Research Letters 33, 127–133 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assignment problem. Mathematical Programming 62, 461–474 (1993)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Svensson, O.: Santa claus schedules jobs on unrelated machines. In: Proceedings of the 43th Annual ACM Symposium on Theory of Computing, STOC 2011 (2011) (to appear)Google Scholar
  24. 24.
    Verschae, J., Wiese, A.: On the configuration-LP for scheduling on unrelated machines. Technical Report 025-2010, Technische Universität Berlin (November 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • José Verschae
    • 1
  • Andreas Wiese
    • 1
  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations