Motion Planning via Manifold Samples
Abstract
We present a general and modular algorithmic framework for path planning of robots. Our framework combines geometric methods for exact and complete analysis of low-dimensional configuration spaces, together with sampling-based approaches that are appropriate for higher dimensions. We suggest taking samples that are entire low-dimensional manifolds of the configuration space. These samples capture the connectivity of the configuration space much better than isolated point samples. Geometric algorithms then provide powerful primitive operations for complete analysis of the low-dimensional manifolds. We have implemented our framework for the concrete case of a polygonal robot translating and rotating amidst polygonal obstacles. To this end, we have developed a primitive operation for the analysis of an appropriate set of manifolds using arrangements of curves of rational functions. This modular integration of several carefully engineered components has lead to a significant speedup over the PRM sampling-based algorithm, which represents an approach that is prevalent in practice.
Keywords
Motion Planning Motion Planning Problem Polygonal Obstacle Trait Class Free Space CellPreview
Unable to display preview. Download preview PDF.
References
- 1.Choset, H., Burgard, W., Hutchinson, S., Kantor, G., Kavraki, L.E., Lynch, K., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Cambridge (2005)MATHGoogle Scholar
- 2.Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)CrossRefMATHGoogle Scholar
- 3.LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
- 4.Reif, J.H.: Complexity of the mover’s problem and generalizations. In: FOCS, pp. 421–427. IEEE Computer Society, Washington, DC, USA (1979)Google Scholar
- 5.Lozano-Perez, T.: Spatial planning: A configuration space approach. MIT AI Memo 605 (1980)Google Scholar
- 6.Schwartz, J.T., Sharir, M.: On the “piano movers” problem: II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics 4(3), 298–351 (1983)MATHGoogle Scholar
- 7.Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics. Springer, Heidelberg (2003)MATHGoogle Scholar
- 8.Canny, J.F.: Complexity of Robot Motion Planning (ACM Doctoral Dissertation Award). MIT Press, Cambridge (1988)Google Scholar
- 9.Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: A singly exponential stratification scheme for real semi-algebraic varieties and its applications. Theoretical Computer Science 84(1), 77–105 (1991)CrossRefMATHGoogle Scholar
- 10.Aronov, B., Sharir, M.: On translational motion planning of a convex polyhedron in 3-space. SIAM J. Comput. 26(6), 1785–1803 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 11.Avnaim, F., Boissonnat, J., Faverjon, B.: A practical exact motion planning algorithm for polygonal object amidst polygonal obstacles. In: Boissonnat, J.-D., Laumond, J.-P. (eds.) Geometry and Robotics. LNCS, vol. 391, pp. 67–86. Springer, Heidelberg (1989)CrossRefGoogle Scholar
- 12.Halperin, D., Sharir, M.: A near-quadratic algorithm for planning the motion of a polygon in a polygonal environment. Disc. Comput. Geom. 16(2), 121–134 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 13.Schwartz, J.T., Sharir, M.: On the “piano movers” problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun. Pure appl. Math. 35, 345–398 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 14.Sharir, M.: Algorithmic Motion Planning. In: Handbook of Discrete and Computational Geometry, 2nd edn., CRC Press, Inc., Boca Raton (2004)Google Scholar
- 15.Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra with applications. CAD 39(11), 929–940 (2007)MATHGoogle Scholar
- 16.Hachenberger, P.: Exact Minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra into convex pieces. Algorithmica 55(2), 329–345 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 17.Wein, R.: Exact and efficient construction of planar minkowski sums using the convolution method. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 829–840. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 18.Kavraki, L.E., Kolountzakis, M.N., Latombe, J.C.: Analysis of probabilistic roadmaps for path planning. IEEE Trans. Robot. Automat. 14(1), 166–171 (1998)CrossRefGoogle Scholar
- 19.Kuffner, J.J., Lavalle, S.M.: RRT-Connect: An efficient approach to single-query path planning. In: ICRA, pp. 995–1001. IEEE, Los Alamitos (2000)Google Scholar
- 20.Ladd, A.M., Kavraki, L.E.: Generalizing the analysis of PRM. In: ICRA, pp. 2120–2125. IEEE, Los Alamitos (2002)Google Scholar
- 21.Hirsch, S., Halperin, D.: Hybrid motion planning: Coordinating two discs moving among polygonal obstacles in the plane. In: WAFR 2002, pp. 225–241 (2002)Google Scholar
- 22.Zhang, L., Kim, Y.J., Manocha, D.: A hybrid approach for complete motion planning. In: IROS, pp. 7–14 (2007)Google Scholar
- 23.De Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008)CrossRefMATHGoogle Scholar
- 24.Lien, J.M.: Hybrid motion planning using Minkowski sums. In: RSS 2008 (2008)Google Scholar
- 25.Yang, J., Sacks, E.: RRT path planner with 3 DOF local planner. In: ICRA, pp. 145–149. IEEE, Los Alamitos (2006)Google Scholar
- 26.Salzman, O., Hemmer, M., Raveh, B., Halperin, D.: Motion planning via manifold samples. In: arXiv:1107.0803 (2011)Google Scholar
- 27.Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley Professional, Reading (2001)Google Scholar
- 28.The CGAL Project: CGAL User and Reference Manual. 3.7 edn. CGAL Editorial Board (2010), http://www.cgal.org/
- 29.Canny, J., Donald, B., Ressler, E.K.: A rational rotation method for robust geometric algorithms. In: SoCG 1992, pp. 251–260. ACM, New York (1992)Google Scholar
- 30.Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1998)Google Scholar
- 31.Berberich, E., Hemmer, M., Kerber, M.: A generic algebraic kernel for non-linear geometric applications. In: SoCG 2011 (2011)Google Scholar
- 32.Plaku, E., Bekris, K.E., Kavraki, L.E.: OOPS for motion planning: An online open-source programming system. In: ICRA, pp. 3711–3716. IEEE, Los Alamitos (April 2007)Google Scholar
- 33.Mayer, N., Fogel, E., Halperin, D.: Fast and robust retrieval of Minkowski sums of rotating convex polyhedra in 3-space. In: SPM, pp. 1–10 (2010)Google Scholar
- 34.Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Arrangements on parametric surfaces I: General framework and infrastructure. Mathematics in Computer Science 4(1), 45–66 (2010)MathSciNetCrossRefMATHGoogle Scholar