Maximum Flows by Incremental Breadth-First Search

  • Andrew V. Goldberg
  • Sagi Hed
  • Haim Kaplan
  • Robert E. Tarjan
  • Renato F. Werneck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)


Maximum flow and minimum s-t cut algorithms are used to solve several fundamental problems in computer vision. These problems have special structure, and standard techniques perform worse than the special-purpose Boykov-Kolmogorov (BK) algorithm. We introduce the incremental breadth-first search (IBFS) method, which uses ideas from BK but augments on shortest paths. IBFS is theoretically justified (runs in polynomial time) and usually outperforms BK on vision problems.


Maximum Flow Growth Step Adjacency List Distance Label Active Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, C., Banerjee, S., Kalra, P., Maheshwari, S.: An Efficient Graph Cut Algorithm for Computer Vision Problems. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 552–565. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boykov, Y., Veksler, O.: Graph Cuts in Vision and Graphics: Theories and Applications. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 109–131. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Chandran, B., Hochbaum, D.: A Computational Study of the Pseudoflow and Push-Relabel Algorithms for the Maximum Flow Problem. Operations Research 57, 358–376 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cherkassky, B.V.: A Fast Algorithm for Computing Maximum Flow in a Network. In: Karzanov, A.V. (ed.) Collected Papers. Combinatorial Methods for Flow Problems, vol. 3, pp. 90–96. The Institute for Systems Studies, Moscow (1979) (in Russian); English translation appears in AMS Trans. 158, 23–30 (1994)Google Scholar
  6. 6.
    Cherkassky, B.V., Goldberg, A.V.: On Implementing Push-Relabel Method for the Maximum Flow Problem. Algorithmica 19, 390–410 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dantzig, G.B.: Application of the Simplex Method to a Transportation Problem. In: Koopmans, T.C. (ed.) Activity Analysis and Production and Allocation, pp. 359–373. Wiley, New York (1951)Google Scholar
  8. 8.
    Dinic, E.A.: Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl. 11, 1277–1280 (1970)Google Scholar
  9. 9.
    Ford Jr., L.R., Fulkerson, D.R.: Maximal Flow Through a Network. Canadian Journal of Math. 8, 399–404 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goldberg, A.V.: Two-Level Push-Relabel Algorithm for the Maximum Flow Problem. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 212–225. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Goldberg, A.V., Rao, S.: Beyond the Flow Decomposition Barrier. J. Assoc. Comput. Mach. 45, 753–782 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goldberg, A.V., Tarjan, R.E.: A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach. 35, 921–940 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Goldfarb, D., Grigoriadis, M.D.: A Computational Comparison of the Dinic and Network Simplex Methods for Maximum Flow. Annals of Oper. Res. 13, 83–123 (1988)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Johnson, D.S., McGeoch, C.C.: Network Flows and Matching: First DIMACS Implementation Challenge. AMS, Providence (1993)CrossRefzbMATHGoogle Scholar
  15. 15.
    Karzanov, A.V.: Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Dok. 15, 434–437 (1974)zbMATHGoogle Scholar
  16. 16.
    King, V., Rao, S., Tarjan, R.: A Faster Deterministic Maximum Flow Algorithm. J. Algorithms 17, 447–474 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. J. Comput. System Sci. 26, 362–391 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrew V. Goldberg
    • 1
  • Sagi Hed
    • 2
  • Haim Kaplan
    • 2
  • Robert E. Tarjan
    • 3
  • Renato F. Werneck
    • 1
  1. 1.Microsoft Research Silicon ValleyUSA
  2. 2.Tel Aviv UniversityIsrael
  3. 3.Princeton University and HP LabsUSA

Personalised recommendations