Submodular Max-SAT

  • Yossi Azar
  • Iftah Gamzu
  • Ran Roth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)


We introduce the submodular Max-SAT problem. This problem is a natural generalization of the classical Max-SAT problem in which the additive objective function is replaced by a submodular one. We develop a randomized linear-time 2/3-approximation algorithm for the problem. Our algorithm is applicable even for the online variant of the problem. We also establish hardness results for both the online and offline settings. Notably, for the online setting, the hardness result proves that our algorithm is best possible, while for the offline setting, the hardness result establishes a computational separation between the classical Max-SAT and the submodular Max-SAT.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asano, T.: Approximation algorithms for max sat: Yannakakis vs. goemans-williamson. In: Proceedings 5th Israel Symposium on Theory of Computing and Systems, pp. 24–37 (1997)Google Scholar
  2. 2.
    Asano, T.: An improved analysis of goemans and williamson’s lp-relaxation for max sat. Theor. Comput. Sci. 354(3), 339–353 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asano, T., Williamson, D.P.: Improved approximation algorithms for max sat. J. Algorithms 42(1), 173–202 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. In: SICOMP (2010)Google Scholar
  5. 5.
    Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings 51st FOCS (2010)Google Scholar
  6. 6.
    Chen, J., Friesen, D.K., Zheng, H.: Tight bound on johnson’s algorithm for maximum satisfiability. J. Comput. Syst. Sci. 58(3), 622–640 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coppersmith, D., Gamarnik, D., Hajiaghayi, M.T., Sorkin, G.B.: Random max sat, random max cut, and their phase transitions. Random Struct. Algorithms 24(4), 502–545 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dobzinski, S., Schapira, M.: An improved approximation algorithm for combinatorial auctions with submodular bidders. In: Proceedings of 17th SODA, pp. 1064–1073 (2006)Google Scholar
  9. 9.
    Engebretsen, L.: Simplified tight analysis of johnson’s algorithm. Inf. Process. Lett. 92(4), 207–210 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feldman, M., Naor, J., Schwartz, R.: Personal Communication (2011)Google Scholar
  12. 12.
    Goemans, M.X., Williamson, D.P.: 878-Approximation algorithms for max cut and max 2sat. In: Proceedings 26th STOC, pp. 422–431 (1994)Google Scholar
  13. 13.
    Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goundan, P.R., Schulz, A.S.: Revisiting the greedy approach to submodular set function maximization (2007) (manuscript)Google Scholar
  15. 15.
    Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Karloff, H.J., Zwick, U.: A 7/8-approximation algorithm for max 3sat? In: Proceedings 38th FOCS, pp. 406–415 (1997)Google Scholar
  18. 18.
    Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings 20th SODA, pp. 545–554 (2009)Google Scholar
  19. 19.
    Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple matroids via generalized exchange properties. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 244–257. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Mirrokni, V.S., Schapira, M., Vondrák, J.: Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In: Proceedings 9th EC 2008, pp. 70–77 (2008)Google Scholar
  21. 21.
    Moshkovitz, D., Raz, R.: Two-query pcp with subconstant error. J. ACM, 57(5) (2010)Google Scholar
  22. 22.
    Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Math. Operations Research 3(3), 177–188 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions i. Mathematical Programming 14, 265–294 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Poloczek, M., Schnitger, G.: Randomized variants of johnson’s algorithm for max sat. In: SODA, pp. 656–663 (2011)Google Scholar
  25. 25.
    Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wolsey, L.A.: Maximising real-valued submodular functions: Primal and dual heuristics for location problems. Math. Operations Research 7(3), 410–425 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yannakakis, M.: On the approximation of maximum satisfiability. J. Algorithms 17(3), 475–502 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zwick, U.: Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to max cut and other problems. In: Proceedings of 31st STOC, pp. 679–687 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yossi Azar
    • 1
  • Iftah Gamzu
    • 2
  • Ran Roth
    • 1
  1. 1.Blavatnik School of Computer ScienceTel-Aviv UniversityTel-AvivIsrael
  2. 2.Microsoft R&D CenterHerzliyaIsrael

Personalised recommendations