Exact Algorithm for the Maximum Induced Planar Subgraph Problem

  • Fedor V. Fomin
  • Ioan Todinca
  • Yngve Villanger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)

Abstract

We prove that in an n-vertex graph, an induced planar subgraph of maximum size can be found in time O(1.7347 n ). This is the first algorithm breaking the trivial 2 n n O(1) bound of the brute-force search algorithm for the Maximum Induced Planar Subgraph problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelsmark, O., Thapper, J.: Partitioning based algorithms for some colouring problems. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 44–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bouchitté, V., Mazoit, F., Todinca, I.: Chordal embeddings of planar graphs. Discr. Math. 273(1-3), 85–102 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31(1), 212–232 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Buneman, P.: A characterization of rigid circuit graphs. Discr. Math. 9, 205–212 (1974)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3(3), 1–27 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. In: An EATCS Series: Texts in Theoretical Computer Science, Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. Journal of Graph Theory 51(1), 53–81 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion, J.-Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  10. 10.
    Gapers, S., Kratch, D., Liedloff, M.: On independent sets and bicliques in graphs. WG (2008); to appear. Preliminary version in WGGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completness. Freeman, New York (1979)MATHGoogle Scholar
  12. 12.
    Gaspers, S.: Exponential Time Algorithms: Structures, Measures, and Bounds. Phd thesis, University of Bergen (2008)Google Scholar
  13. 13.
    Gavril, F.: The intersection graphs of a path in a tree are exactly the chordal graphs. Journal of Combinatorial Theory 16, 47–56 (1974)CrossRefMATHGoogle Scholar
  14. 14.
    Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for maximum -regular induced subgraph problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kreweras, G.: Sur les partition non croisées d’un circle. Discr. Math. 1, 333–350 (1972)CrossRefMATHGoogle Scholar
  16. 16.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is np-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Liebers, A.: Planarizing graphs - a survey and annotated bibliography. Journal of Graph Algorithms and Applications 5 (2001)Google Scholar
  18. 18.
    Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3, 23–28 (1965)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Robertson, N., Seymour, P.D.: Graphs minors. II. Algorithmic aspects of tree-width. J. of Algorithms 7, 309–322 (1986)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Ioan Todinca
    • 2
  • Yngve Villanger
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.LIFOUniversité d’OrléansOrléans cedesFrance

Personalised recommendations