Exact Algorithm for the Maximum Induced Planar Subgraph Problem

  • Fedor V. Fomin
  • Ioan Todinca
  • Yngve Villanger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)


We prove that in an n-vertex graph, an induced planar subgraph of maximum size can be found in time O(1.7347 n ). This is the first algorithm breaking the trivial 2 n n O(1) bound of the brute-force search algorithm for the Maximum Induced Planar Subgraph problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelsmark, O., Thapper, J.: Partitioning based algorithms for some colouring problems. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 44–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bouchitté, V., Mazoit, F., Todinca, I.: Chordal embeddings of planar graphs. Discr. Math. 273(1-3), 85–102 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31(1), 212–232 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Buneman, P.: A characterization of rigid circuit graphs. Discr. Math. 9, 205–212 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3(3), 1–27 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. In: An EATCS Series: Texts in Theoretical Computer Science, Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. Journal of Graph Theory 51(1), 53–81 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion, J.-Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  10. 10.
    Gapers, S., Kratch, D., Liedloff, M.: On independent sets and bicliques in graphs. WG (2008); to appear. Preliminary version in WGGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completness. Freeman, New York (1979)zbMATHGoogle Scholar
  12. 12.
    Gaspers, S.: Exponential Time Algorithms: Structures, Measures, and Bounds. Phd thesis, University of Bergen (2008)Google Scholar
  13. 13.
    Gavril, F.: The intersection graphs of a path in a tree are exactly the chordal graphs. Journal of Combinatorial Theory 16, 47–56 (1974)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for maximum -regular induced subgraph problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kreweras, G.: Sur les partition non croisées d’un circle. Discr. Math. 1, 333–350 (1972)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is np-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Liebers, A.: Planarizing graphs - a survey and annotated bibliography. Journal of Graph Algorithms and Applications 5 (2001)Google Scholar
  18. 18.
    Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3, 23–28 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Robertson, N., Seymour, P.D.: Graphs minors. II. Algorithmic aspects of tree-width. J. of Algorithms 7, 309–322 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Ioan Todinca
    • 2
  • Yngve Villanger
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.LIFOUniversité d’OrléansOrléans cedesFrance

Personalised recommendations