Advertisement

Min-Cuts and Shortest Cycles in Planar Graphs in O(n loglogn) Time

  • Jakub Łącki
  • Piotr Sankowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)

Abstract

We present a deterministic O(n loglogn) time algorithm for finding shortest cycles and minimum cuts in planar graphs. The algorithm improves the previously known fastest algorithm by Italiano et al. in STOC’11 by a factor of logn. This speedup is obtained through the use of dense distance graphs combined with a divide-and-conquer approach. Extending this approach we are able to show an O(n 5/6 log5/2 n) time dynamic algorithm al well.

Keywords

Short Path Planar Graph Short Cycle Original Graph Recursive Call 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17, 209–223 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Borradaile, G., Sankowski, P., Wulff-Nilsen, C.: Min st-cut oracle for planar graphs with near-linear preprocessing time. In: FOCS, pp. 601–610. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  3. 3.
    Chalermsook, P., Fakcharoenphol, J., Nanongkai, D.: A deterministic near-linear time algorithm for finding minimum cuts in planar graphs. In: Ian Munro, J. (ed.) SODA, pp. 828–829. SIAM, Philadelphia (2004)Google Scholar
  4. 4.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algorithms and Applications 3(3), 1–27 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time. J. Comput. Syst. Sci. 72(5), 868–889 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6), 1004–1022 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1), 3–23 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lu, H.-I., Chang, H.-C.: Subquadratic algorithm for dynamic shortest distances. In: COCOON (to appear, 2011)Google Scholar
  9. 9.
    Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Italiano, G.F., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Improved Min Cuts and Max Flows in Undirected Planar Graphs. In: STOC (2011)Google Scholar
  11. 11.
    Karger, D.R.: Minimum cuts in near-linear time. Journal of the ACM (JACM) 47(1), 46–76 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA, pp. 146–155. SIAM, Philadelphia (2005)Google Scholar
  13. 13.
    Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multiple and capacitated graphs. In: Asano, T., Imai, H., Ibaraki, T., Nishizeki, T. (eds.) SIGAL 1990. LNCS, vol. 450, pp. 12–20. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  14. 14.
    Thorup, M.: Fully-dynamic min-cut. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 224–230. ACM, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Yuster, R., Zwick, U.: Finding even cycles even faster. SIAM J. Discrete Math. 10(2), 209–222 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jakub Łącki
    • 1
  • Piotr Sankowski
    • 1
  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations