Cytoplasm Image Segmentation by Spatial Fuzzy Clustering

  • Laura Caponetti
  • Giovanna Castellano
  • Vito Corsini
  • Teresa M. A. Basile
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6857)

Abstract

This work presents an approach based on image texture analysis to obtain a description of oocyte cytoplasm which could aid the clinicians in the selection of oocytes to be used in the assisted insemination process. More specifically, we address the problem of providing a description of the oocyte cytoplasm in terms of regular patterns of granularity which are related to oocyte quality. To this aim, we perform a texture analysis on the cytoplasm region and apply a spatial fuzzy clustering to segment the cytoplasm into different granular regions. Preliminary experimental results on a collection of light microscope images of oocytes are reported to show the effectiveness of the proposed approach.

Keywords

Image Segmentation Intracytoplasmic Sperm Injection Human Oocyte Oocyte Image Light Microscope Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. on Medical Images 21(3), 193–199 (2002)CrossRefGoogle Scholar
  2. 2.
    Basile, T.M.A., Caponetti, L., Castellano, G., Sforza, G.: A texture-based image processing approach for the description of human oocyte cytoplasm. IEEE Trans. on Instrumentation and Measurement 59(10s), 2591–2601 (2010)CrossRefGoogle Scholar
  3. 3.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)CrossRefMATHGoogle Scholar
  4. 4.
    Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constrained based on new kernel-induced distance measure. IEEE Trans. on Systems, Man and Cybernetics 34(4), 1907–1916 (2004)CrossRefGoogle Scholar
  5. 5.
    Chuang, K., Tzenget, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics 30(1), 9–15 (2006)CrossRefGoogle Scholar
  6. 6.
    Garbay, C.: Image structure representation and processing discussion of some segmentation methods in cytology. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 140–146 (1986)CrossRefGoogle Scholar
  7. 7.
    Kahraman, S., Yakin, K., Donmez, E., Samli, H., Bahce, M., Cengiz, G., Sertyel, S., Samli, M., Imirzalioglu, N.: Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Human Reproduction 15(11), 2390–2393 (2000)CrossRefGoogle Scholar
  8. 8.
    Loutradis, D., Drakakis, P., Kallianidis, K., Milingos, S., Dendrinos, S., Michalas, S.: Oocyte morphology correlates with embryo quality and pregnancy rate after intracytoplasmic sperm injection. Fertility and Sterility 72(2), 240–244 (1999)CrossRefGoogle Scholar
  9. 9.
    Plachot, M., Selva, J., Wolf, J., Bastit, P., de Mouzon, J.: Consequences of oocyte dysmorphy on the fertilization rate and embryo development after intracytoplasmic sperm injection. a prospective multicenter study. Gynecology Obstetrique & Fertilite 30(10), 772–779 (2002)CrossRefGoogle Scholar
  10. 10.
    Serhal, P.F., Ranieri, D.M., Kinis, A., Marchant, S., Davies, M., Khadum, I.M.: Oocyte morphology predicts outcome of intracytoplasmic sperm injection. Human Reproducion 12(6), 1267–1270 (1997)CrossRefGoogle Scholar
  11. 11.
    Sklansky, J.: On the hough technique for curve detection. IEEE Trans. Comput. 27(10), 923–926 (1978)CrossRefMATHGoogle Scholar
  12. 12.
    Stalf, T., Herrero, J., Mehnert, C., Manolopoulos, K., Lenhard, A., Gips, H.: Influence of polarization effects in ooplasma and pronuclei on embryo quality and implantation in an IVF program. Journal of Assisted Reproduction and Genetics 19(8), 355–362 (2002)CrossRefGoogle Scholar
  13. 13.
    Suppinyopong, S., Choavaratana, R., Karavakul, C.: Correlation of oocyte morphology with fertilization rate and embryo quality after intracytoplasmic sperm injection. Journal of The Medical Association of Thailand (83), 627–632 (2000)Google Scholar
  14. 14.
    Tolias, Y., Panas, S.: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions. IEEE Trans. on Systems, Man and Cybernetics, Part A 28(3), 359–369 (1998)CrossRefGoogle Scholar
  15. 15.
    Wang, X.Y., Bua, J.: A fast and robust image segmentation using FCM with spatial information. Digital Signal Processing 20, 1173–1182 (2010)CrossRefGoogle Scholar
  16. 16.
    Wu, H.S., Barba, J., Gil, J.: Iterative thresholding for segmentation of cells from noisy images. Journal of Microscopy 197(3), 296–304 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Laura Caponetti
    • 1
  • Giovanna Castellano
    • 1
  • Vito Corsini
    • 1
  • Teresa M. A. Basile
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di BariBariItaly

Personalised recommendations