Advertisement

Generating Understandable and Accurate Fuzzy Rule-Based Systems in a Java Environment

  • J. M. Alonso
  • L. Magdalena
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6857)

Abstract

Looking for a good interpretability-accuracy trade-off is one of the most challenging tasks on fuzzy modelling. Indeed, interpretability is acknowledged as a distinguishing capability of linguistic fuzzy systems since the proposal of Zadeh and Mamdani’s seminal ideas. Anyway, obtaining interpretable fuzzy systems is not straightforward. It becomes a matter of careful design which must cover several abstraction levels. Namely, from the design of each individual linguistic term (and its related fuzzy set) to the analysis of the cooperation among several rules, what depends on the fuzzy inference mechanism. This work gives an overview on existing tools for fuzzy system modelling. Moreover, it introduces GUAJE which is an open-source free-software java environment for building understandable and accurate fuzzy rule-based systems by means of combining several pre-existing tools.

Keywords

interpretability fuzzy modeling free open source software 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Computing 13(3), 307–318 (2009)CrossRefGoogle Scholar
  2. 2.
    Alonso, J.M., Cordón, O., Quirin, A., Magdalena, L.: Analyzing interpretability of fuzzy rule-based systems by means of fuzzy inference-grams. In: World Congress on Soft Computing (2011)Google Scholar
  3. 3.
    Alonso, J.M., Magdalena, L.: HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers. Soft Computing (2010), doi:10.1007/s00500-010-0628-5Google Scholar
  4. 4.
    Alonso, J.M., Magdalena, L., Cordón, O.: Embedding hilk in a three-objective evolutionary algorithm with the aim of modeling highly interpretable fuzzy rule-based classifiers. In: IV International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS), pp. 15–20 (2010)Google Scholar
  5. 5.
    Alonso, J.M., Magdalena, L., Guillaume, S.: KBCT: A knowledge extraction and representation tool for fuzzy logic based systems. In: IEEE International Conference on Fuzzy Systems, pp. 989–994 (2004)Google Scholar
  6. 6.
    Alonso, J.M., Magdalena, L., Guillaume, S.: HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism. International Journal of Intelligent Systems 23(7), 761–794 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Alonso, J.M., Magdalena, L., Guillaume, S., Sotelo, M.A., Bergasa, L.M., Ocaña, M., Flores, R.: Knowledge-based intelligent diagnosis of ground robot collision with non detectable obstacles. Journal of Robotic & Intelligent Systems 48, 539–566 (2007)CrossRefGoogle Scholar
  8. 8.
    Alonso, J.M., Muñoz, A., Botía, J.A., Magdalena, L., Gómez-Skarmeta, A.F.: Uso de ontologías para facilitar las tareas de extracción y representación de conocimiento en el diseño de sistemas basados en reglas borrosas. In: XIV Spanish ESTYLF Conference on Fuzzy Logic and Technologies, pp. 233–240 (2008)Google Scholar
  9. 9.
    Alonso, J.M., Ocaña, M., Sotelo, M.A., Bergasa, L.M., Magdalena, L.: WiFi localization system using fuzzy rule-based classification. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 383–390. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Alvarez, A., Alonso, J.M., Trivino, G., Hernandez, N., Herranz, F., Llamazares, A., Ocaña, M.: Human activity recognition applying computational intelligence techniques for fusing information related to wifi positioning and body posture. In: IEEE World Congress on Computational Intelligence, pp. 295–304 (2010)Google Scholar
  11. 11.
    Bergasa, L.M., Nuevo, J., Sotelo, M.A., Barea, R., López, M.E.: Real-time system for monitoring driver vigilance. IEEE Transactions on Intelligent Transportation Systems 7(1), 63–77 (2006)CrossRefGoogle Scholar
  12. 12.
    Borgelt, C., González-Rodríguez, G.: FrIDA - a free intelligent data analysis toolbox. In: IEEE International Conference on Fuzzy Systems, pp. 1892–1896 (2007)Google Scholar
  13. 13.
    Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-Vincentelli, A.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers Group, Dordrecht (1984)CrossRefzbMATHGoogle Scholar
  14. 14.
    Cannone, R., Alonso, J.M., Magdalena, L.: Multi-objective design of highly interpretable fuzzy rule-based classifiers with semantic cointension. In: V International Workshop on Genetic and Evolutionary Fuzzy Systems, GEFS (2011)Google Scholar
  15. 15.
    Durillo, J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective optimization: Design and architecture. In: IEEE World Congress on Computational Intelligence, pp. 4318–4325 (2010)Google Scholar
  16. 16.
    Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Software - Practice and Experience 30(11), 1203–1233 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Garcia-Saez, G., Alonso, J.M., Molero, J., Rigla, M., Martinez-Sarriegui, I., de Leiva, A., Gomez, E.J., Hernando, M.E.: Mealtime blood glucose classifier based on fuzzy logic for the diabtel telemedicine system. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds.) AIME 2009. LNCS, vol. 5651, pp. 295–304. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Guillaume, S., Charnomordic, B.: Generating an interpretable family of fuzzy partitions. IEEE Transactions on Fuzzy Systems 12(3), 324–335 (2004)CrossRefGoogle Scholar
  19. 19.
    Guillaume, S., Charnomordic, B.: Learning interpretable fuzzy inference systems with FisPro. Information Sciences, Special Issue on Interpretable Fuzzy Systems (2011) (In press)Google Scholar
  20. 20.
    Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Applied Statistics 28, 100–108 (1979)CrossRefzbMATHGoogle Scholar
  21. 21.
    Ichihashi, H., Shirai, T., Nagasaka, K., Miyoshi, T.: Neuro-fuzzy ID3: A method of inducing fuzzy decision trees with linear programming for maximizing entropy and an algebraic method for incremental learning. Fuzzy Sets and Systems 81, 157–167 (1996)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Magdalena, L.: What is soft computing? Revisiting possible answers. In: 8th International FLINS Conference, 2008, pp. 3–10 (2008)Google Scholar
  23. 23.
    Muñoz, A., Vera, A., Botía, J.A., Gómez-Skarmeta, A.F.: Defining basic behaviours in ambient intelligence environments by means of rule-based programming with visual tools. In: 1st Workshop of Artificial Intelligence Techniques for Ambient Intelligence. ECAI (2006)Google Scholar
  24. 24.
    Mencar, C., Castiello, C., Cannone, R., Fanelli, A.: Interpretability assessment of fuzzy knowledge bases: a cointension based approach. International Journal of Approximate Reasoning 52(4), 501–518 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mencar, C., Fanelli, A.M.: Interpretability constraints for fuzzy information granulation. Information Sciences 178, 4585–4618 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man and Cybernetics 22 (6), 1414–1427 (1992)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  28. 28.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on SMC 3, 28–44 (1973)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Parts I, II, and III. Information Sciences 8, 8, 9, 199–249, 301–357, 43–80 (1975)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. M. Alonso
    • 1
  • L. Magdalena
    • 1
  1. 1.European Centre for Soft ComputingMieresSpain

Personalised recommendations