Advertisement

Evaluation of Image Segmentation Algorithms from the Perspective of Salient Region Detection

  • Bogdan Popescu
  • Andreea Iancu
  • Dumitru Dan Burdescu
  • Marius Brezovan
  • Eugen Ganea
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6915)

Abstract

The present paper addresses the problem of image segmentation evaluation by comparing seven different approaches. We are presenting a new method of salient object detection with very good results relative to other already known object detection methods. We developed a simple evaluation framework in order to compare the results of our method with other segmentation methods. The results of our experimental work offer good perspectives for our algorithm, in terms of efficiency and precision.

Keywords

color segmentation graph-based segmentation salient region detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fu, K., Mui, J.: A survey on image segmentation. Pattern Recognition (1981)Google Scholar
  2. 2.
    Donoser, M., Bischof, H.: ROI-SEG: Unsupervised Color Segmentation by Combining Differently Focused Sub Results. Institute for Computer Graphics and Vision Graz University of TechnologyGoogle Scholar
  3. 3.
    Kim, T.H., Lee, K.M., Lee, S.U.: Learning Full Pairwise Affinities for Spectral Segmentation. Dept. of EECS, ASRI, Seoul National University, 151-742, Seoul, KoreaGoogle Scholar
  4. 4.
    Yang, A.Y., Wright, J., Sastry, S., Ma, Y.: Unsupervised Segmentation of Natural Images via Lossy Data Compression (2007) (preprint submitted to Elsevier)Google Scholar
  5. 5.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. Int. Conf. Comp. Vis., vol. 2, pp. 416–425 (2001)Google Scholar
  6. 6.
    Felzenszwalb, P., Huttenlocher, D.: Efficient Graph-Based Image Segmentation. Intl. J. Computer Vision 59(2) (2004)Google Scholar
  7. 7.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  8. 8.
    Christoudias, C., Georgescu, B., Meer, P.: Synergism in Low Level Vision. In: Proc. Intl. Conf. Pattern Recognition, vol. 4, pp. 150–156 (2002)Google Scholar
  9. 9.
    Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward Objective Evaluation of Image Segmentation Algorithms. IEEE Transactions on Pattern Analysis and Machine Inteligence 29(6) (2007)Google Scholar
  10. 10.
    Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8) (2000)Google Scholar
  11. 11.
    Berkeley Segmentation and Boundary Detection Benchmark and Dataset (2003), http://www.cs.berkeley.edu/projects/vision/grouping/segbench
  12. 12.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, New York (2000)zbMATHGoogle Scholar
  13. 13.
    Brezovan, M., Burdescu, D.D., Ganea, E., Stanescu, L.: An Adaptive Method for Efficient Detection of Salient Visual Object from Color Images. In: Proc. of the 20th International Conference on Pattern Recognition (ICPR), Istambul, pp. 2346–2349 (2010)Google Scholar
  14. 14.
    Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmentation using expectation-maximization and its application to image querying and classification. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(8), 1026–1037 (2002)CrossRefGoogle Scholar
  15. 15.
    Fauqueur, J., Boujemaa, N.: Region-based image retrieval: Fast coarse segmentation and fine color description. Journal of Visual Languages and Computing 15(1), 69–95 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 731–737 (1997)Google Scholar
  17. 17.
  18. 18.
    Dowson, D., Landau, B.: The Frechet distance between multivariate normal distributions. Journal Multivariate Analysis 12(3), 450–455 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Brin, S., Page., L.: The anatomy of a large-scale hypertextual web search engine. In: WWW (1998)Google Scholar
  20. 20.
    Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with local and global consistency. In: NIPS (2003)Google Scholar
  21. 21.
    Pan, J.-Y., Yang, H.-J., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-modal correlation discovery. In: KDD (2004)Google Scholar
  22. 22.
    Ge, F., Wang, S., Liu, T.: New benchmark for image segmentation evaluation. Journal of Electronic Imaging 16(3), 033011 (JulSep 2007)CrossRefGoogle Scholar
  23. 23.
    Cox, T., Cox, M.: Multidimensional Scaling. 2nd edn. Chapman and Hall/CRC Press, Boca Raton, FL (2000)Google Scholar
  24. 24.
    Levine, M., Nazif, A.: Dynamic measurement of computer generated image segmentations. IEEE Trans. on Pattern Analysis and Machine Intelligence 7, 155–164 (1985)CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Wardi, Y.: A recursive segmentation and classification scheme for improving segmentation accuracy and detection rate in realtime machine vision applications. In: Proc. of the Int. Conf. on Digital Signal Processing (DSP 2002), vol. 2 (July, 2002)Google Scholar
  26. 26.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. of the IEEE Conference on Computer Vision, pp. 414–425 (2001)Google Scholar
  27. 27.
    Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(5), 530–549 (2004)CrossRefGoogle Scholar
  28. 28.
    Huang, Q., Dom, B.: Quantitative methods of evaluating image segmentation. In: Proc. of the Int. Conf. on Image Processing (ICIP 1995), vol. 3, pp. 53–56 (1995)Google Scholar
  29. 29.
    Odet, C., Belaroussi, B., Benoit-Cattin, H.: Scalable discrepancy measures for segmentation evaluation. In: Proc. of the Int. Conf. on Image Processing (ICIP 2002), vol. 1, pp. 785–788 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bogdan Popescu
    • 1
  • Andreea Iancu
    • 1
  • Dumitru Dan Burdescu
    • 1
  • Marius Brezovan
    • 1
  • Eugen Ganea
    • 1
  1. 1.Software Engineering DepartmentUniversity of CraiovaCraiovaRomania

Personalised recommendations