Polymer Adhesion and Biomimetic Surfaces for Green Tribology

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Adhesive properties of polymeric materials and modern techniques of surface modification make polymers appropriate for Green Tribology applications, which require functional surfaces and the ability to control, and modify and surface properties, such as adhesion and wetting. Polymers, along with polymer composites, are appropriate materials for coating and various biomimetic applications, such as those utilizing the Lotus and gecko effects. In this chapter, we review polymer properties relevant to adhesion and wetting, modern methods and techniques of surface modification which are used to synthesize and produce superhydrophobic biomimetic materials as well as the methods of surface characterization.

Keywords

Contact Angle Silica Nanoparticles Water Contact Angle Anodic Aluminum Oxide Superhydrophobic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the support of the University of Wisconsin-Milwaukee (UWM) RGI, NSF I/UCRC for Water Equipment and Policy, and UWM Research Foundation Bradley Catalyst grants.

References

  1. 1.
    K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full, Evidence for van der Waals adhesion in gecko setae. PNAS 99, 12252–12256 (2002)CrossRefGoogle Scholar
  2. 2.
    R. Asmatulu, M. Ceylan, N. Nuraje, Study of superhydrophobic electrospun nanocomposite fibers for energy systems. Langmuir 27, 504–507 (2011)CrossRefGoogle Scholar
  3. 3.
    G.Y. Bae, B.G. Min, Y.G. Jeong, S.C. Lee, J.H. Jang, G.H. Koo, Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. J. Colloid Interface Sci. 337, 170–175 (2009)CrossRefGoogle Scholar
  4. 4.
    G.Y. Bae, Y.G. Jeong, B.G. Min, Superhydrophobic PET fabrics achieved by silica nanoparticles and water-repellent agent. Fibers Polymers 11, 976–981 (2010)CrossRefGoogle Scholar
  5. 5.
    B. Bhushan, K. Koch, Y.C. Jung, Nanostructures for superhydrophobicity and low adhesion. Soft Matter 4, 1799–1804 (2008)CrossRefGoogle Scholar
  6. 6.
    B. Bhushan, E.K. Her, Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 26, 8207–8217 (2010)CrossRefGoogle Scholar
  7. 7.
    H. Biederman, S.M. Ojha, L. Holland, The properties of fluorocarbon films prepared by r.f. sputtering and plasma polymerization in inert and active gas. Thin Solid Films 41, 329–339 (1977)CrossRefGoogle Scholar
  8. 8.
    E. Bormashenko, T. Stein, G. Whyman, Y. Bormashenko, R. Pogreb, Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir 22, 9982–9998 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Bravo, L. Zhai, Z. Wu, R.E. Cohen, M.F. Rubner, Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23, 7293–7298 (2007)CrossRefGoogle Scholar
  10. 10.
    A.B.D. Cassie, Contact angles. Discuss. Faraday Soc. 3, 11–16 (1948)CrossRefGoogle Scholar
  11. 11.
    H. Chen, Z. Yuan, J. Zhang, Y. Liu, K. Li, D. Zhao, S. Li, P. Shi, J. Tang, Preparation, characterization and wettability of porous superhydrophobic poly (vinyl chloride) surface. J. Porous. Mater. 16, 447–451 (2009)CrossRefGoogle Scholar
  12. 12.
    Z. Cheng, J. Gao, L. Jiang, Tip geometry controls adhesive states of superhydrophobic surfaces. Langmuir 26, 8233–8238 (2010)CrossRefGoogle Scholar
  13. 13.
    D. Chernoff, S. Magonov, Chapter 19: Atomic Force Microscopy, in Comprehensive Desk Reference of Polymer Characterization and Analysis, ed. by R. Brady (Oxford University Press, New York, 2003)Google Scholar
  14. 14.
    S.J. Choi, K.Y. Suh, H.H. Lee, A geometry controllable approach for the fabrication of biomimetic hierarchical structure and its superhydrophobicity with near-zero sliding angle. Nanotechnology 19, 1–5 (2008)Google Scholar
  15. 15.
    B.V. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS 14, 633–662 (1941)Google Scholar
  16. 16.
    B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)CrossRefGoogle Scholar
  17. 17.
    N. Dilsiz, R. Partch, E. Matijevic, E. Sancaktar, Silver coating of spindle- and filament-type magnetic particles for conductive adhesive applications. J. Adhes. Sci. Technol. 11, 1105–1118 (1997)CrossRefGoogle Scholar
  18. 18.
    H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Transformation of a simple plastic into a superhydrophobic surface. Science 299, 1377–1380 (2003)CrossRefGoogle Scholar
  19. 19.
    J. Feng, B. Huang, M. Zhong, Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding. J. Colloid Interface Sci. 336, 268–272 (2009)CrossRefGoogle Scholar
  20. 20.
    R.A. Fisher, On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines. J. Agric. Sci. 16, 492–505 (1926)CrossRefGoogle Scholar
  21. 21.
    N. García, E. Benito, P. Tiemblo, M.M.B. Hasan, A. Synytska, M. Stamm, Chemically guided topography in alkylsilane- and oligosiloxane-modified silica nanoparticle coatings: from very hydrophobic surfaces to “pearl” bouncing droplets. Soft Matter 6, 4768–4776 (2010)CrossRefGoogle Scholar
  22. 22.
    H. Ge, Y. Song, L. Jiang, D. Zhu, One-step preparation of polystyrene colloidal crystal films with structural colors and high hydrophobicity. Thin Solid Films 515, 1539–1543 (2006)CrossRefGoogle Scholar
  23. 23.
    J. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, 3rd edn. (Kluwer Academic, New York, 2003)CrossRefGoogle Scholar
  24. 24.
    S. Gupta, A.C. Arjunan, S. Deshpande, S. Seal, D. Singh, R.K. Singh, Superhydrophobic polytetrafluoroethylene thin films with hierarchical roughness deposited using a single step vapor phase technique. Thin Solid Films 517, 4555–4559 (2009)CrossRefGoogle Scholar
  25. 25.
    W.B. Haines, Studies in the physical properties of soils: IV a further contribution to the theory of capillary phenomena in soil. J. Agric. Sci. 17, 264–290 (1927)CrossRefGoogle Scholar
  26. 26.
    D. Han, A.J. Steckl, Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 25, 9454–9462 (2009)CrossRefGoogle Scholar
  27. 27.
    H.R. Harron, R.G. Pritchard, B.C. Cope, D.T. Goddard, An atomic force microscope (AFM) and tapping mode AFM study of the solvent-induced crystallization of polycarbonate thin films. J. Polym. Sci. B: Polym. Phys. 34, 173–180 (1996)CrossRefGoogle Scholar
  28. 28.
    H. Hertz, Über die berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1882)CrossRefGoogle Scholar
  29. 29.
    S.H. Hong, J. Hwang, H. Lee, Replication of cicada wing’s nano-patterns by hot embossing and UV nanoimprinting. Nanotechnology 20, 1–5 (2009)MATHGoogle Scholar
  30. 30.
    L. Hong, T. Pan, Photopatternable superhydrophobic nanocomposites for microfabrication. J. Microelectromech. Syst. 19, 246–253 (2010)CrossRefGoogle Scholar
  31. 31.
    W. Hou, Q. Wang, Stable polytetrafluoroethylene superhydrophobic surface with lotus-leaf structure. J. Colloid Interface Sci. 333, 400–403 (2009)CrossRefGoogle Scholar
  32. 32.
    W. Hou, Q. Wang, Wetting behavior of a SiO2–polystyrene nanocomposite surface. J. Colloid Interface Sci. 316, 206–209 (2007)CrossRefGoogle Scholar
  33. 33.
    X. Hou, X. Wanga, Q. Zhua, J. Baoa, C. Mao, L. Jianga, J. Shena, Preparation of polypropylene superhydrophobic surface and its blood compatibility. Colloids Surf. B 80, 247–250 (2010)CrossRefGoogle Scholar
  34. 34.
    C.T. Hsieh, F.L. Wu, S.Y. Yang, Superhydrophobicity from composite nano/microstructures: Carbon fabrics coated with silica nanoparticles. Surf. Coat. Technol. 202, 6103–6108 (2008)CrossRefGoogle Scholar
  35. 35.
    C.T. Hsieh, W.Y. Chen, F.L. Wu, Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/nanoscaled two-tier roughness. Carbon 46, 1218–1224 (2008)CrossRefGoogle Scholar
  36. 36.
    J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic, London, 1992)Google Scholar
  37. 37.
    H.E. Jeong, M.K. Kwak, C.I. Park, K.Y. Suh, Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography. J. Colloid Interface Sci. 339, 202–207 (2009)CrossRefGoogle Scholar
  38. 38.
    H.E. Jeong, R. Kwak, J.K. Kim, K.Y. Suh, Generation and self-replication of monolithic, dual-scale polymer structures by two-step capillary-force lithography. Small 4, 1913–1918 (2008)CrossRefGoogle Scholar
  39. 39.
    R.M. Jisr, H.H. Rmaile, J.B. Schlenoff, Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes. Angew. Chem. Int. Ed. 44, 782–785 (2005)CrossRefGoogle Scholar
  40. 40.
    K.L. Johnson, K. Kendall, A.D. Roberts, surface energy and the contact of elastic solids. proc.R. Soc. Lond. A 324, 301–313 (1971)CrossRefGoogle Scholar
  41. 41.
    L. Jiang, Y. Zhao, J. Zhai, A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. Int. Ed. 43, 4338–4341 (2004)CrossRefGoogle Scholar
  42. 42.
    M. Kanga, R. Junga, H.S. Kima, H.J. Jinb, Preparation of superhydrophobic polystyrene membranes by electrospinning. Colloids Surf. A 313–314, 411–414 (2008)CrossRefGoogle Scholar
  43. 43.
    J.H. Kim, G. Liu, S.H. Kim, Deposition of stable hydrophobic coatings with in-line CH4 atmospheric rf plasma. J. Mater. Chem. 16, 977–981 (2006)CrossRefGoogle Scholar
  44. 44.
    D. Klee, H. Hocker, Polymers for biomedical applications, improvement of the interface compatibility. Adv. Polym. Sci. 149, 1–57 (2000)CrossRefGoogle Scholar
  45. 45.
    K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott, Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5, 1386–1393 (2009)CrossRefGoogle Scholar
  46. 46.
    W. Lee, M.K. Jin, W.C. Yoo, J.K. Lee, Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 20, 7665–7669 (2004)CrossRefGoogle Scholar
  47. 47.
    S.M. Lee, H.S. Lee, D.S. Kim, T.H. Kwon, Fabrication of hydrophobic films replicated from plant leaves in nature. Surf. Coat. Technol. 201, 553–559 (2006)CrossRefGoogle Scholar
  48. 48.
    S.M. Lee, T.H. Kwon, Mass-producible replication of highly hydrophobic surfaces from plant leaves. Nanotechnology 17, 3189–3196 (2006)CrossRefGoogle Scholar
  49. 49.
    S.M. Lee, T.H. Kwon, Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf. J. Micromech. Microeng. 17, 687–692 (2007)CrossRefGoogle Scholar
  50. 50.
    D. Leonard, Y. Chevolot, O. Bucher, H. Sigrist, H.J. Mathieu, Part 2. N-[m-(3-(trifluoromethyl) diazirine-3-yl)phenyl]-4-(-3-thio(-1-D-galactopyrannosyl)-maleimidyl) butyramide (MAD-Gal) on diamond. Surf. Interface Anal 26, 793–799 (1998)CrossRefGoogle Scholar
  51. 51.
    O.M. Leung, M.C. Goh, Orientational ordering of polymers by atomic force microscope tipsurface interaction. Science 255, 64–66 (1992)CrossRefGoogle Scholar
  52. 52.
    A.Y.M. Lin, R. Brunner, P.Y. Chen, F.E. Talke, M.A. Meyers, Underwater adhesion of abalone. The role of van der Waals and capillary forces. Acta Mater. 57, 4178–4185 (2009)CrossRefGoogle Scholar
  53. 53.
    J.C. Melrose, Model calculations for capillary condensation. Am. Inst. Chem. Eng. J. 12, 986–994 (1966)CrossRefGoogle Scholar
  54. 54.
    X. Li, G. Chen, Y. Ma, L. Feng, H. Zhao, L. Jiang, F. Wang, Preparation of a super-hydrophobic poly(vinyl chloride) surface via solvent–nonsolvent coating. Polymer 47, 506–509 (2006)CrossRefGoogle Scholar
  55. 55.
    X. Li, B. Ding, J. Lin, J. Yu, G. Sun, Enhanced mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers. J. Phys. Chem. C 113, 20452–20457 (2009)CrossRefGoogle Scholar
  56. 56.
    X. Li, X. Du, J. He, Self-Cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles. Langmuir 26, 13528–13534 (2010)CrossRefGoogle Scholar
  57. 57.
    Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qi, J.H. Xin, Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J. Mater. Chem. 17, 1071–1078 (2007)CrossRefGoogle Scholar
  58. 58.
    X. Lu, C. Zhang, Y. Han, Low-density polyethylene superhydrophobic surface by control of its crystallization behavior. Macromol. Rapid Commun. 25, 1606–1610 (2004)CrossRefGoogle Scholar
  59. 59.
    M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikh, G.C. Rutledge, Electrospun poly (styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21, 5549–5554 (2005)CrossRefGoogle Scholar
  60. 60.
    X.H. Men, Z.Z. Zhang, H.J. Song, K. Wang, W. Jiang, Fabrication of superhydrophobic surfaces with poly(furfuryl alcohol)/multi-walled carbon nanotubes composites. Appl. Surf. Sci. 254, 2563–2568 (2008)CrossRefGoogle Scholar
  61. 61.
    R. Menini, M. Farzaneh, Production of superhydrophobic polymer fibers with embedded particles using the electrospinning technique. Polym. Int. 57, 77–84 (2008)CrossRefGoogle Scholar
  62. 62.
    D.J. Morrison, T. Robertson, R.F. sputtering of plastics. Thin Solid Films 15, 87–101 (1973)CrossRefGoogle Scholar
  63. 63.
    V.M. Muller, V.S. Yushchenko, B.V. Derjaguin, On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface Sci. 77, 91–101 (1980)CrossRefGoogle Scholar
  64. 64.
    V.M. Muller, B.V. derjaguin, Y.P. Toporov, On 2 methods of calculation of the force of sticking of an elastic sphere to a rigid plane. Colloids Surf. 7, 251–259 (1983)CrossRefGoogle Scholar
  65. 65.
    P. Nagaraja, D. Yao, Rapid pattern transfer of biomimetic surface structures onto thermoplastic polymers. Mater. Sci. Eng. C 27, 794–797 (2007)CrossRefGoogle Scholar
  66. 66.
    M. Nosonovsky, E. Bormashenko, “Lotus Effect: Superhydrophobicity and Self-Cleaning,” Functional Properties of Biological Surfaces: Characterization and Technological Applications, ed. by E. Favret, N. Fuentes, (World Scientific, Singapore, 2009), pp. 43–78Google Scholar
  67. 67.
    C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667–677 (1997)CrossRefGoogle Scholar
  68. 68.
    S.G. Park, J.H. Moon, S.K. Lee, J. Shim, S.M. Yang, Bioinspired holographically featured superhydrophobic and supersticky nanostructured materials. Langmuir 26, 1468–1472 (2010)CrossRefGoogle Scholar
  69. 69.
    M. Peng, H. Li, L. Wu, Q. Zheng, Y. Chen, W. Gu, Porous poly(vinylidene fluoride) membrane with highly hydrophobic surface. J. Appl. Polym. Sci. 98, 1358–1363 (2005)CrossRefGoogle Scholar
  70. 70.
    E. Puukilainen, H.K. Koponen, Z. Xiao, S. Suvanto, T.A. Pakkanen, Nanostructured and chemically modified hydrophobic polyolefin surfaces. Colloids Surf. A 287, 175–181 (2006)CrossRefGoogle Scholar
  71. 71.
    Y. Rahmawan, M.W. Moon, K.S. Kim, K.R. Lee, K.Y. Suh, Wrinkled, dual-scale structures of Diamond-Like Carbon (DLC) for superhydrophobicity. Langmuir 26, 484–491 (2010)CrossRefGoogle Scholar
  72. 72.
    B.D. Ratner, B.J. Tyler, A. Chilkoti, Analysis of biomedical polymer surfaces: polyurethanes and plasma-deposited thin films. Clin. Mater. 13, 71–84 (1993)CrossRefGoogle Scholar
  73. 73.
    T. Rhodin, Scanning probe microscopies, nanoscience and nanotechnology. Appl. Phys. A 72, 141–143 (2001)CrossRefGoogle Scholar
  74. 74.
    D.K. Sarkar, M. Farzaneh, R.W. Paynter, Superhydrophobic properties of ultrathin rf-sputtered Teflon films coated etched aluminum surfaces. Mater. Lett. 62, 1226–1229 (2008)CrossRefGoogle Scholar
  75. 75.
    M. Schoen, T. Gruhn, D.J. Diestler, Solvation forces in thin films confined between macroscopically curved substrates. J. Chem. Phys. 109, 301–311 (1998)CrossRefGoogle Scholar
  76. 76.
    X. Sheng, J. Zhang, Superhydrophobic behaviors of polymeric surfaces with aligned nanofibers. Langmuir 25, 6916–6922 (2009)MathSciNetCrossRefGoogle Scholar
  77. 77.
    J. Shi, N.M. Alves, J.F. Mano, Towards bioinspired superhydrophobic poly (L-lactic acid) surfaces using phase inversion-based methods. Bioinsp. Biomim. 3, 1–6 (2008)CrossRefGoogle Scholar
  78. 78.
    J.Y. Shiu, C.W. Kuo, P. Chen, C.Y. Mou, Superhydrophobic PET fabrics achieved by silica nanoparticles and water-repellent agent. Chem. Mater. 16, 561–564 (2004)CrossRefGoogle Scholar
  79. 79.
    S. Srinivasan, V.K. Praveen, R. Philip, A. Ajayaghosh, Bioinspired superhydrophobic coatings of carbon nanotubes and linear π systems based on the “bottom-up” self-assembly approach. Angew. Chem. Int. Ed. 47, 5750–5754 (2008)Google Scholar
  80. 80.
    P.R. Start, K.A. Mauritz, Surlyn/silicate nanocomposite materials via a polymer in situ sol–gel process: morphology. J Polym Sci B: Polym Phys 41, 1563–1571 (2003)CrossRefGoogle Scholar
  81. 81.
    C. Sun, L.Q. Ge, Z.Z. Gu, Fabrication of super-hydrophobic film with dual-size roughness by silica sphere assembly. Thin Solid Films 515, 4686–4690 (2007)CrossRefGoogle Scholar
  82. 82.
    K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano, Transparent ultra water-repellent poly (ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Appl. Surf. Sci. 244, 619–622 (2005)CrossRefGoogle Scholar
  83. 83.
    J.M. Tibbitt, M. Shen, A.T. Bell, A comparison of r.f. sputtered and plasma polymerized thin films of tetrafluoroethylene. Thin Solid Films 29, L43–L45 (1975)CrossRefGoogle Scholar
  84. 84.
    E.J.W. Verwey, J.Th.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, New York, 1948)Google Scholar
  85. 85.
    N. Vourdas, A. Tserepi, E. Gogolides, Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing. Nanotechnology 18, 1–7 (2007)CrossRefGoogle Scholar
  86. 86.
    T. Wagner, C. Neinhuis, W. Barthlott, Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool. 77, 213–225 (1996)CrossRefGoogle Scholar
  87. 87.
    D.E. Weibel, A.F. Michels, A.F. Feil, L. Amaral, S.R. Teixeira, F. Horowitz, Adjustable hydrophobicity of al substrates by chemical surface functionalization of nano/microstructures. J. Phys. Chem. C 114, 13219–13225 (2010)CrossRefGoogle Scholar
  88. 88.
    W. Wu, Q. Zhu, F. Qing, C.C. Han, Water repellency on a fluorine-containing polyurethane surface: toward understanding the surface self-cleaning effect. Langmuir 25, 17–20 (2009)MATHCrossRefGoogle Scholar
  89. 89.
    B. Xu, Z. Cai, Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl. Surf. Sci. 254, 5899–5904 (2008)CrossRefGoogle Scholar
  90. 90.
    C.H. Xue, S.T. Jia, J. Zhang, L.Q. Tian, Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid Films 517, 4593–4598 (2009)CrossRefGoogle Scholar
  91. 91.
    L. Yan, K. Wang, J. Wu, L. Ye, Hydrophobicity of model surfaces with closely packed nano- and micro-spheres. Colloids Surf. A 296, 123–131 (2007)CrossRefGoogle Scholar
  92. 92.
    J. Yang, P. Pi, X. Wen, D. Zheng, M. Xu, J. Cheng, Z. Yang, A novel method to fabricate superhydrophobic surfaces based on well-defined mulberry-like particles and self-assembly of polydimethylsiloxane. Appl. Surf. Sci. 255, 3507–3512 (2009)CrossRefGoogle Scholar
  93. 93.
    J. Yang, Z. Zhang, X. Men, X. Xu, Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes. Appl. Surf. Sci. 255, 9244–9247 (2009)CrossRefGoogle Scholar
  94. 94.
    Y.E. Yoo, T.H. Kim, D.S. Choi, S.M. Hyun, H.J. Lee, K.H. Lee, S.K. Kim, B.H. Kim, Y.H. Seo, H.G. Lee, J.S. Lee, Injection molding of a nanostructured plate and measurement of its surface properties. Curr. Appl Phys. 9, e12–e18 (2009)CrossRefGoogle Scholar
  95. 95.
    H. Yoon, J.H. Park, G.H. Kim, A superhydrophobic surface fabricated by an electrostatic process. Macromol. Rapid Commun. 31, 1435–1439 (2010)CrossRefGoogle Scholar
  96. 96.
    Z. Yuan, H. Chen, J. Tang, H. Gong, Y. Liu, Z. Wang, P. Shi, J. Zhang, X. Chen, A novel preparation of polystyrene film with a superhydrophobic surface using a template method. J. Phys. D Appl. Phys. 40, 3485–3489 (2007)CrossRefGoogle Scholar
  97. 97.
    Z. Yuan, H. Chen, J. Tang, X. Chen, D. Zhao, Z. Wang, Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol. Surf. Coat. Technol. 201, 7138–7142 (2007)CrossRefGoogle Scholar
  98. 98.
    Z. Yuan, H. Chen, J. Zhang, D. Zhao, Y. Liu, X. Zhou, S. Li, P. Shi, J. Tang, X. Chen, Preparation and characterization of self-cleaning stable superhydrophobic linear low-density polyethylene. Sci. Technol. Adv. Mater. 9, 1–5 (2008)CrossRefGoogle Scholar
  99. 99.
    Z. Yuan, H. Chen, J. Tang, D. Zhao, A stable porous superhydrophobic high-density polyethylene surface prepared by adding ethanol in humid atmosphere. J. Appl. Polym. Sci. 113, 1626–1632 (2009)CrossRefGoogle Scholar
  100. 100.
    J. Zhang, W. Huang, Y. Han, A composite polymer film with both superhydrophobicity and superoleophilicity. Macromol. Rapid Commun. 27, 804–808 (2006)CrossRefGoogle Scholar
  101. 101.
    L. Zhang, H. Chen, J. Sun, J. Shen, Layer-by-layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate; facile method to prepare a superhydrophobic surface. Chem. Mater. 19, 948–953 (2007)CrossRefGoogle Scholar
  102. 102.
    X.W. Zhang, Hydroentangling: a novel approach to high-speed fabrication of carbon nanotube membranes. Adv. Mater. 20, 4140–4144 (2008)Google Scholar
  103. 103.
    Y. Zhang, H. Wang, B. Yan, Y. Zhang, P. Yin, G. Shen, R. Yu, A rapid and efficient strategy for creating super-hydrophobic coatings on various material substrates. J. Mater. Chem. 18, 4442–4449 (2008)CrossRefGoogle Scholar
  104. 104.
    N. Zhao, L. Weng, X. Zhang, Q. Xie, X. Zhang, J. Xu, Lotus-leaf-like superhydrophobic surface prepared by solvent-induced crystallization. Chem. Phys. Chem. 7, 824–827 (2006)CrossRefGoogle Scholar
  105. 105.
    Z. Zheng, Z. Gu, R. Huo, Y. Ye, Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution. Appl. Surf. Sci. 255, 7263–7267 (2009)CrossRefGoogle Scholar
  106. 106.
    Z. Zheng, Z. Gu, R. Huo, Z. Luo, Superhydrophobic poly(vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition. Appl. Surf. Sci. 256, 2061–2065 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations