Green Nanotribology and Sustainable Nanotribology in the Frame of the Global Challenges for Humankind

  • I. C. GebeshuberEmail author
Part of the Green Energy and Technology book series (GREEN)


This chapter deals with green and sustainable nanotribology. It highlights the challenges, development and opportunities of these new, emerging fields of science and embeds them in the major frame of the most serious problems we currently face on our planet. Fifteen global challenges are annually identified by the Millennium Project, a major undertaking that was started in 1996 and that incorporates organizations of the United Nations, governments, corporations, non-governmental organizations, universities and individuals from more than 50 countries from around the world.


Microbial Fuel Cell Technological Breakthrough Global Challenge Causal Knowledge Fossil Fuel Subsidy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The National University of Malaysia funded part of this work with its leading-edge research project scheme ‘Arus Perdana’. Profs. F. Aumayr, H. Störi and G. Badurek from the Vienna University of Technology are acknowledged for enabling ICG three years of research in the inspiring environment in Malaysia.


  1. 1.
    D.V. Andreeva, D. Fix, H. Moehwald, D.G. Shchukin, Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures. Adv. Mater. 20(14), 2789–2794 (2008)CrossRefGoogle Scholar
  2. 2.
    Anonymous, Summary: world tribology congress 2009 (WTC IV) (2010), International Tribology Council Information, No. 191, Accessed 4 October 2011
  3. 3.
    K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair. Nature 405(6787), 681–685 (2000)CrossRefGoogle Scholar
  4. 4.
    D.M. Balshaw, M. Philbert, W.A. Suk, Research strategies for safety evaluation of nanomaterials, Part III: nanoscale technologies for assessing risk and improving public health. Toxicol. Sci. 88(2), 298–306 (2005)CrossRefGoogle Scholar
  5. 5.
    Y. Bar-Cohen, Biomimetics: Biologically Inspired Technologies (CRC Press, Boca Raton, 2005)CrossRefGoogle Scholar
  6. 6.
    W. Barthlott, C. Neinhuis, The purity of sacred lotus or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)CrossRefGoogle Scholar
  7. 7.
    A. Bartlett, Environmental sustainability (1997), Talk given at the American Association of Physics Teachers Meeting, Denver, Colorado, 16 August 1997, last accessed 6 October 2011
  8. 8.
    W. Baumgartner, F. Saxe, A. Weth, D. Hajas, D. Sigumonrong, J. Emmerlich, M. Singheiser, W. Böhme, J.M. Schneider, The sandfish’s skin: morphology, chemistry and reconstruction. J. Bionic. Eng. 4(1), 1–9 (2007)CrossRefGoogle Scholar
  9. 9.
    P. Behrens, E. Baeuerlein, Handbook of Biomineralization: Biomimetic and Bioinspired Chemistry (Wiley–VCH, Weinheim, 2009)Google Scholar
  10. 10.
    S. Berthier, Iridescences: The Physical Colors of Insects (Springer, New York, 2006)Google Scholar
  11. 11.
    B. Bhushan (ed.), Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)Google Scholar
  12. 12.
    P. Borm, F.C. Klaessig, T.D. Landry, B. Moudgil, J. Pauluhn, K. Thomas, R. Trottier, S. Wood, Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 90(1), 23–32 (2006)CrossRefGoogle Scholar
  13. 13.
    T.L. Daniel, Fish mucus: in situ measurements of polymer drag reduction. Biol. Bull. 160, 376–382 (1981)CrossRefGoogle Scholar
  14. 14.
    J.P. Davim (ed.), in Biomaterials and Medical Tribology: Research and Development. Woodhead Publishing Reviews: Mechanical Engineering Series No. 4 (2011)Google Scholar
  15. 15.
    A.P. del Pobil, J. Mira, A. Moonis (eds.), Methodology and tools in knowledge-based systems. 11th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. Notes in Artificial Intelligence, vol. 1, (Springer, Berlin, 1998)Google Scholar
  16. 16.
    A. Demirbas, Biodiesel: A Realistic Fuel Alternative for Diesel Engines (Springer-Verlag, London, 2008)Google Scholar
  17. 17.
    J. Diamond, Collapse: How Societies Choose to Fail or Succeed (Viking Books, NY, 2005)Google Scholar
  18. 18.
    H. Fan, Y. Lu, A. Stump, S.T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G.P. López, C.J. Brinker, Rapid prototyping of patterned functional nanostructures. Nature 405, 56–60 (2000)CrossRefGoogle Scholar
  19. 19.
    P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007)CrossRefGoogle Scholar
  20. 20.
    A. Gazsó, The Austrian experience–project nanotrust (2008), OECD Database, Accessed 14 Aug 2010
  21. 21.
    I.C. Gebeshuber, Green nanotribology. Proc. IMechE Part C: J. Mech. Eng. Sci., Special Issue, Guest Editors: Ille C. Gebeshuber, Manish Roy, (to appear in February 2012)Google Scholar
  22. 22.
    I.C. Gebeshuber, Biotribology inspires new technologies. Nano Today 2(5), 30–37 (2007)CrossRefGoogle Scholar
  23. 23.
    I.C. Gebeshuber, R.M. Crawford, Micromechanics in biogenic hydrated silica: hinges and interlocking devices in diatoms. Proc. IMechE Part J: J. Eng. Tribol. 220(8), 787–796 (2006)CrossRefGoogle Scholar
  24. 24.
    I.C. Gebeshuber, M. Drack, An attempt to reveal synergies between biology and engineering mechanics. Proc. IMechE Part C: J. Mech. Eng. Sci. 222(7), 1281–1287 (2008)CrossRefGoogle Scholar
  25. 25.
    I.C. Gebeshuber, B.Y. Majlis, New ways of scientific publishing and accessing human knowledge inspired by transdisciplinary approaches. Tribol.–Surf. Mater. Interfaces 4(3), 143–151 (2010)Google Scholar
  26. 26.
    I.C. Gebeshuber, B.Y. Majlis, 3D corporate tourism: a concept for innovation in nanomaterials engineering. Int. J. Mat. Eng. Innov. 2(1), 38–48 (2011)CrossRefGoogle Scholar
  27. 27.
    I.C. Gebeshuber, M. Drack, M. Scherge, Tribology in biology. Tribol.–Surf. Mater. Interfaces 2(4), 200–212 (2008)CrossRefGoogle Scholar
  28. 28.
    I.C. Gebeshuber, M. Drack, F. Aumayr, H.P. Winter, F. Franek, Scanning Probe Microscopy: From Living Cells to the Subatomic Range, in Biosystems Investigated by Scanning Probe Microscopy. Fuchs, 1st edn., ed. by H. Fuch, B. Bhushan (Springer, New York, 2010), p. 834Google Scholar
  29. 29.
    I.C. Gebeshuber, P. Gruber, M. Drack, A gaze into the crystal ball–biomimetics in the year 2059. Proc. IMechE Part C: J. Mech. Eng. Sci. 223(12), 2899–2918 (2009)CrossRefGoogle Scholar
  30. 30.
    I.C. Gebeshuber, B.Y. Majlis, H. Stachelberger, Tribology in biology: biomimetic studies across dimensions and across fields. Int. J. Mech. Mat. Eng. 4(3), 321–327 (2009)Google Scholar
  31. 31.
    I.C. Gebeshuber, B.Y. Majlis, H. Stachelberger, Biomimetics in tribology, in BiomimeticsMaterials, Structures and Processes. Examples, Ideas and Case Studies, ed. by P. Gruber, D. Bruckner, C. Hellmich, H.-B. Schmiedmayer, H. Stachelberger, I.C. Gebeshuber. Series: Biological and Medical Physics, Biomedical Engineering, Series Editor Claus Ascheron (Springer, Berlin), 25–50 (in press)Google Scholar
  32. 32.
    I.C. Gebeshuber, H. Stachelberger, M. Drack, Diatom bionanotribology–biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear. J. Nanosci. Nanotechnol. 5(1), 79–87 (2005)CrossRefGoogle Scholar
  33. 33.
    I.C. Gebeshuber, H. Stachelberger, B.A. Ganji, D.C. Fu, J. Yunas, B.Y. Majlis, Exploring the innovational potential of biomimetics for novel 3D MEMS. Adv. Mat. Res. 74, 265–268 (2009)CrossRefGoogle Scholar
  34. 34.
    I.C. Gebeshuber, J.B. Thompson, Y. Del Amo, H. Stachelberger, J.H. Kindt, In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties. Mat. Sci. Technol. 18(7), 763–766 (2002)CrossRefGoogle Scholar
  35. 35.
    S.K. Ghosh, Self-healing Materials: Fundamentals, Design Strategies, and Applications (Wiley-VCH, Weinheim, 2009)Google Scholar
  36. 36.
    J.C. Glenn, T.J. Gordon, E. Florescu, 2011 State of the future. (The Millennium Project, 2011)Google Scholar
  37. 37.
    P.O. Haikonen, Robot Brains: Circuits and Systems for Conscious Machines (Wiley-Interscience, Chichester, 2007)Google Scholar
  38. 38.
    C.E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, V. Smetacek, Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421, 841–843 (2003)CrossRefGoogle Scholar
  39. 39.
    J. Hazel, M. Stone, M.S. Grace, V.V. Tsukruk, Nanoscale design of snake skin for reptation locomotions via friction anisotropy. J. Biomech. 32(5), 477–484 (1999)CrossRefGoogle Scholar
  40. 40.
    M.P. Holsapple, L.D. Lehman-McKeeman, Forum Series: research strategies for safety evaluation of nanomaterials. Toxicol. Sci. 87(2), 315 (2005)CrossRefGoogle Scholar
  41. 41.
    M.P. Holsapple, W.H. Farland, T.D. Landry, N.A. Monteiro-Riviere, J.M. Carter, N.J. Walker, K.V. Thomas, Research strategies for safety evaluation of nanomaterials, Part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol. Sci. 88(1), 12–17 (2005)CrossRefGoogle Scholar
  42. 42.
    S. Jakowska, Mucus secretion in fish–a note. Ann. N. Y. Acad. Sci. 160, 458–462 (1963)Google Scholar
  43. 43.
    R.A.L. Jones, Challenges in soft nanotechnology. Faraday Discuss. 2009(143), 9–14 (2009)CrossRefGoogle Scholar
  44. 44.
    A. Kessel, N. Ben-Tal, Introduction to Proteins: Structure, Function, and Motion. Chapman and Hall/CRC Mathematical and Computational Biology (CRC Press, Boca Raton, 2010)Google Scholar
  45. 45.
    S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific Publishing Company, Singapore, 2008)CrossRefGoogle Scholar
  46. 46.
    A. Kobayashi, I. Yamamoto, T. Aoyama, in Tribology of a Snail (terrestrial gastropod). Proceedings 29th Leeds-Lyon Symposium on Tribology, Tribology Series, vol. 41 (Elsevier, Amsterdam, 2004), pp. 429–436Google Scholar
  47. 47.
    A. Kumar, L.D. Stephenson, J.N. Murray, Self-healing coatings for steel. Progr. Org. Coat. 55(3), 244–253 (2006)CrossRefGoogle Scholar
  48. 48.
    C.S.S.R. Kumar (ed.), Biomimetic and Bioinspired Nanomaterials, Series Nanomaterials for Life Sciences (Wiley-VCH, Weinheim, 2010)Google Scholar
  49. 49.
    R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993)CrossRefGoogle Scholar
  50. 50.
    D. Lee, Nature’s Palette: The Science of Plant Color (University of Chicago Press, Chicago, 2007)Google Scholar
  51. 51.
    S.C. Ling, T.Y.J. Ling, Anomalous drag-reducing phenomenon at a water/fish-mucus or polymer interface. J. Fluid Mech. 65(3), 499–512 (1974)CrossRefGoogle Scholar
  52. 52.
    Y. Liu, E. Kim, R. Ghodssi, G.W. Rubloff, J.N. Culver, W.E. Bentley, G.F. Payne, Biofabrication to build the biology–device interface. Biofabrication 2, 022002 (2010)CrossRefGoogle Scholar
  53. 53.
    M.O. Macqueen, J. Mueller, C.F. Dee, I.C. Gebeshuber, GEMS: a MEMS-based way for the innervation of materials. Adv Mater Res 254(8), 34–37 (2011)CrossRefGoogle Scholar
  54. 54.
    J.M. Mansour, Biomechanics of Cartilage, in Kinesiology: The Mechanics and Pathomechanics of Human Movement, ed. by C.A. Oatis (Lippincott Williams and Wilkins, Philadelphia, 2003)Google Scholar
  55. 55.
    M. Nosonovsky, B. Bhushan, Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mat. Sci. Eng. R 58(3–5), 162–193 (2007)CrossRefGoogle Scholar
  56. 56.
    M. Nosonovsky, B. Bhushan, Green tribology: principles, research areas and challenges. Phil. Trans. R. Soc. A 368(1929), 4677–4694 (2010)MathSciNetCrossRefGoogle Scholar
  57. 57.
    M. Nosonovsky, B. Bhushan, Theme issue green tribology. Phil. Trans. Roy. Soc. A 368(1929), 4675–4890 (2010)MathSciNetCrossRefGoogle Scholar
  58. 58.
    M. Nosonovsky, B. Bhushan, Green Tribology: Biomimetics Energy Conservation and Sustainability (Springer, Berlin, 2011). this volumeGoogle Scholar
  59. 59.
    T. Okada, M. Kaneko (eds.), Molecular Catalysts for Energy Conversion, Springer Series in Materials Science (Springer, Berlin Heidelberg, 2010)Google Scholar
  60. 60.
    C.E. Orsello, D.A. Lauffenburger, D.A. Hammer, Molecular properties in cell adhesion: a physical and engineering perspective. Trends Biotechnol. 19, 310–316 (2001)CrossRefGoogle Scholar
  61. 61.
    E. Pennisi, Microbes, immunity, and disease: is it time to uproot the tree of life? Science 284(5418), 1305–1307 (1999)CrossRefGoogle Scholar
  62. 62.
    K.W. Powers, S.C. Brown, V.B. Krishna, S.C. Wasdo, B.M. Moudgil, S.M. Roberts, Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci. 90(2), 296–303 (2006)CrossRefGoogle Scholar
  63. 63.
    S. Priya, D.J. Inman (eds.), Energy Harvesting Technologies (Springer, New York, 2010)Google Scholar
  64. 64.
    L. Richert, F. Vetrone, J.-H. Yi, S.F. Zalzal, J.D. Wuest, F. Rosei, A. Nanci, Surface nanopatterning to control cell growth. Adv. Mater. 15, 1–5 (2008)Google Scholar
  65. 65.
    F.E. Round, R.M. Crawford, D.G. Mann, The Diatoms: Biology and Morphology of the Genera (Cambridge University Press, Cambridge, 1990)Google Scholar
  66. 66.
    Z. Rymuza, Tribology of Miniature Systems Tribology Series (Elsevier Science Ltd, Amsterdam, 1989), p. 576. ISBN 978-0444874016Google Scholar
  67. 67.
    C. Sanchez, H. Arribart, M.M. Giraud-Guille, Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater. 4, 277–288 (2005)CrossRefGoogle Scholar
  68. 68.
    M. Scherge, A. Rehl, Hebel der tribologischen Optimierung, presentation given at the opening of the MikroTribologie Centrum μTC, Karlsruhe,Germany, May 2010Google Scholar
  69. 69.
    O.H. Schmitt, Biomimetics in solving engineering problems (1982), Talk given on April 26, 1982. Accessed 4 October 2011
  70. 70.
    A. Sigel, H. Sigel, R.K.O. Sigel (eds.), Biomineralization: From Nature to Application (Metal Ions in Life Sciences), vol. 2 (Wiley, Chichester, 2008)Google Scholar
  71. 71.
    C. Starr, R. Taggart, Animal Structure and Function, vol. 5, Biology the Unity and Diversity of Life (Brooks Cole, Stamfordt, 2008)Google Scholar
  72. 72.
    C. Starr, R. Taggart, Plant Structure and Function, vol. 4, Biology: The Unity and Diversity of Life (Brooks Cole, Stamford, 2008)Google Scholar
  73. 73.
    R. Thomas, R. D’Ari, Biological Feedback (CRC Press, Boca Raton, 1990)zbMATHGoogle Scholar
  74. 74.
    K. Thomas, P. Sayre, Research strategies for safety evaluation of nanomaterials, Part I: Evaluating the human health implications of exposure to nanoscale materials. Toxicol. Sci. 87(2), 316–321 (2005)CrossRefGoogle Scholar
  75. 75.
    K. Thomas, P. Aguar, H. Kawasaki, J. Morris, J. Nakanishi, N. Savage, Research strategies for safety evaluation of nanomaterials, Part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. Toxicol. Sci. 92(1), 23–32 (2006)CrossRefGoogle Scholar
  76. 76.
    T. Thomas, K. Thomas, N. Sadrieh, N. Savage, P. Adair, R. Bronaugh, Research strategies for safety evaluation of nanomaterials, Part VII: Evaluating consumer exposure to nanoscale materials. Toxicol. Sci. 91(1), 14–19 (2006)CrossRefGoogle Scholar
  77. 77.
    D’.A.W. Thompson, On growth and Form (Cambridge University Press, Cambridge, 1917)Google Scholar
  78. 78.
    M.A. Tiffany, R. Gordon, I.C. Gebeshuber, Hyalodiscopsis plana, a sublittoral centric marine diatom, and its potential for nanotechnology as a natural zipper-like nanoclasp. Pol. Bot. J. 55(1), 27–41 (2010)Google Scholar
  79. 79.
    J.S. Tsuji, A.D. Maynard, P.C. Howard, J.T. James, C.-W. Lam, D.B. Warheit, A.B. Santamaria, Research strategies for safety evaluation of nanomaterials, Part IV: Risk assessment of nanoparticles. Toxicol. Sci. 89(1), 42–50 (2006)CrossRefGoogle Scholar
  80. 80.
    M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction. Nature 430, 525–528 (2004)CrossRefGoogle Scholar
  81. 81.
    S. van der Zwaag (ed.), Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, Springer Series in Materials Science (Springer, Dortrecht, 2007)Google Scholar
  82. 82.
    J.F.V. Vincent, Deconstructing the design of a biological material. J. Theor. Biol. 236, 73–78 (2005)CrossRefGoogle Scholar
  83. 83.
    J.F.V. Vincent, O.A. Bogatyreva, N.R. Bogatyrev, A. Bowyer, A. Pahl, Biomimetics—its practice and theory. J. R. Soc. 3(9), 471–482 (2006)Google Scholar
  84. 84.
    P. Vukusic, J.R. Sambles, Photonic structures in biology. Nature 424, 852–855 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaUKM BangiMalaysia
  2. 2.AC²T Austrian Center of Competence for TribologyWiener NeustadtAustria
  3. 3.Institute of Applied Physics, Vienna University of TechnologyWienAustria

Personalised recommendations