Effects of JPEG XR Compression Settings on Iris Recognition Systems

  • Kurt Horvath
  • Herbert Stögner
  • Andreas Uhl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6855)

Abstract

JPEG XR is considered as a lossy sample data compression scheme in the context of iris recognition techniques. It is shown that apart from low-bitrate scenarios, JPEG XR is competitive to the current standard JPEG2000 while exhibiting significantly lower computational demands.

Keywords

Equal Error Rate Biometric System Lossy Compression Iris Recognition Pixel Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daugman, J., Downing, C.: Effect of severe image compression on iris recognition performance. IEEE Transactions on Information Forensics and Security 3(1), 52–61 (2008)CrossRefGoogle Scholar
  2. 2.
    Dufaux, F., Sullivan, G.J., Ebrahimi, T.: The JPEG XR image coding standard. IEEE Signal Processing Magazine 26(6), 195–199 (2009)CrossRefGoogle Scholar
  3. 3.
    Hämmerle-Uhl, J., Prähauser, C., Starzacher, T., Uhl, A.: Improving compressed iris recognition accuracy using JPEG2000 RoI coding. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1102–1111. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Ives, R.W., Broussard, R.P., Kennell, L.R., Soldan, D.L.: Effects of image compression on iris recognition system performance. Journal of Electronic Imaging 17, 11015 (2008), doi:10.1117/1.2891313CrossRefGoogle Scholar
  5. 5.
    Ko, J.-G., Gil, Y.-H., Yoo, J.-H., Chung, K.-I.: A novel and efficient feature extraction method for iris recognition. ETRI Journal 29(3), 399–401 (2007)CrossRefGoogle Scholar
  6. 6.
    Konrad, M., Stögner, H., Uhl, A.: Custom design of JPEG quantization tables for compressing iris polar images to improve recognition accuracy. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1091–1101. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Kostmajer, G.S., Stögner, H., Uhl, A.: Custom JPEG quantization for improved iris recognition accuracy. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT, vol. 297, pp. 76–86. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Matschitsch, S., Tschinder, M., Uhl, A.: Comparison of compression algorithms’ impact on iris recognition accuracy. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 232–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Transactions on Image Processing 13(6), 739–750 (2004)CrossRefGoogle Scholar
  10. 10.
    Zhu, Y., Tan, T., Wang, Y.: Biometric personal identification based on iris patterns. In: Proceedings of the 15th International Conference on Pattern Recognition (ICPR 2000), vol. 2, pp. 2801–2804. IEEE Computer Society, Los Alamitos (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kurt Horvath
    • 1
  • Herbert Stögner
    • 1
  • Andreas Uhl
    • 1
    • 2
  1. 1.School of CEITCarinthia University of Applied SciencesAustria
  2. 2.Department of Computer SciencesUniversity of SalzburgAustria

Personalised recommendations