Color Texture Classification Using Rao Distance between Multivariate Copula Based Models

  • Ahmed Drissi El Maliani
  • Mohammed El Hassouni
  • Nour-Eddine Lasmar
  • Yannick Berthoumieu
  • Driss Aboutajdine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6855)


This paper presents a new similarity measure based on Rao distance for color texture classification or retrieval. Textures are characterized by a joint model of complex wavelet coefficients. This model is based on a Gaussian Copula in order to consider the dependency between color components. Then, a closed form of Rao distance is computed to measure the difference between two Gaussian Copula based probabilty density functions on the corresponding manifold. Results in term of classification rates, show the effectiveness of the Rao geodesic distance when applied on the manifold of Gaussian Copula based probability distributions, in comparison with the Kullback-Leibler divergence.


Color texture classification Gaussian Copula Rao distance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Do, M., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing 11, 146–158 (2002)CrossRefGoogle Scholar
  2. 2.
    Verdoolaeg, G., De Backer, S., Scheunders, P.: Multiscale colour texture retrieval using the geodesic distance between multivariate Generalized Gaussian models. In: Proceedings of the 15th IEEE Interational Conference On Image Processing (ICIP 2008), San Diego, California, USA, pp. 169–172 (2008)Google Scholar
  3. 3.
    Kwitt, R., Uhl, A.: A joint model of complex wavelet coefficients for texture retrieval. In: 16th IEEE International Conference on Image Processing, ICIP 2009, pp. 1877-1880 (2009)Google Scholar
  4. 4.
    Rao, C.: Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–89 (1945)zbMATHGoogle Scholar
  5. 5.
    Pastore, J., Moler, E., Ballarin, V.: Segmentation of brain magnetic resonance images through morphological operators and geodesic distance. In: Digital Signal Processing, vol. 15(2) pp. 153-160 (2005)Google Scholar
  6. 6.
    Yong, Q., Jie, Y.: Modified kernel functions by geodesic distance. EURASIP Journal on Applied Signal Processing 16, 2515–2521 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Oller, J.M.: Information Metric for Extreme Value and Logistic Probability Distributions. The Indian Journal of Statistics, Series A 49, 17–23 (1987)zbMATHGoogle Scholar
  8. 8.
    Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer Series in Statistics. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    Sklar, M.: Fonctions de répartition à n dimensions et leurs marges. Publications de l’institut de Statistique de l’Université de Paris. vol. 8, pp. 229-231 (1959)Google Scholar
  10. 10.
    Joe, H.: Multivariate Models and Dependence Concepts. Monographs on Statistics and Applied Probability. Chapman & Hall, Boca Raton (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    MIT vision and modeling group,
  12. 12.
    Van De Wouwer, G., Scheunders, P., Van Dyck, D.: Statistical Texture Characterization From Discrete Wavelet Representations. IEEE transactions on image processing 8, 592–598 (1999)CrossRefGoogle Scholar
  13. 13.
    Reverter, F., Oller, J.M.: Computing the Rao distance for Gamma distributions. Journal of Computational and Applied Mathematics 157, 155–167 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Durrleman, V., Nikeghbali, A., Roncalli, T.: Which copula is the right one. Groupe de Recherche Operationnelle, Credit Lyonnais (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ahmed Drissi El Maliani
    • 1
  • Mohammed El Hassouni
    • 2
  • Nour-Eddine Lasmar
    • 3
  • Yannick Berthoumieu
    • 3
  • Driss Aboutajdine
    • 1
  1. 1.LRIT, URAC 29Mohammed V UniversityAgdalMorocco
  2. 2.DESTEC, FLSHRMohammed V UniversityAgdalMorocco
  3. 3.IMS- Groupe Signal- UMR 5218 CNRS, ENSEIRBUniversity BordeauxFrance

Personalised recommendations